[go: up one dir, main page]

login
A047260
Numbers that are congruent to {0, 1, 4, 5} mod 6.
3
0, 1, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 28, 29, 30, 31, 34, 35, 36, 37, 40, 41, 42, 43, 46, 47, 48, 49, 52, 53, 54, 55, 58, 59, 60, 61, 64, 65, 66, 67, 70, 71, 72, 73, 76, 77, 78, 79, 82, 83, 84, 85, 88, 89, 90, 91, 94, 95, 96, 97
OFFSET
1,3
COMMENTS
Numbers x which are not a solution to 3^x - 2^x == 5 mod 7. - Cino Hilliard, May 14 2003
The sequence is the interleaving of A047233 with A007310. - Guenther Schrack, Feb 13 2019
FORMULA
G.f.: x^2*(1+3*x+x^2+x^3) / ((1+x)*(1+x^2)*(1-x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (6*n - 5 - i^(2*n) + (1-i)*i^(-n) + (1+i)*i^n)/4 where i=sqrt(-1).
a(2*n) = A007310(n), a(2*n-1) = A047233(n). (End)
From Guenther Schrack, Feb 13 2019: (Start)
a(n) = (6*n - 5 - (-1)^n + 2*(-1)^(n*(n + 1)/2))/4.
a(n) = a(n-4) + 6, a(1)=0, a(2)=1, a(3)=4, a(4)=5, for n > 4.
a(-n) = -A047269(n+2). (End)
Sum_{n>=2} (-1)^n/a(n) = sqrt(3)*Pi/36 + log(3)/4 + 2*log(2)/3. - Amiram Eldar, Dec 16 2021
MAPLE
A047260:=n->(6*n-5-I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n)/4: seq(A047260(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
MATHEMATICA
Table[(6n-5-I^(2n)+(1-I)*I^(-n)+(1+I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 4, 5, 6}, 70] (* Harvey P. Dale, Sep 20 2023 *)
PROG
(Magma) [n : n in [0..100] | n mod 6 in [0, 1, 4, 5]]; // Wesley Ivan Hurt, May 21 2016
(PARI) my(x='x+O('x^70)); concat([0], Vec(x^2*(1+3*x+x^2+x^3)/((1-x)*(1-x^4)))) \\ G. C. Greubel, Feb 16 2019
(Sage) a=(x^2*(1+3*x+x^2+x^3)/((1-x)*(1-x^4))).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019
(GAP) Filtered([0..100], n->n mod 6 = 0 or n mod 6 = 1 or n mod 6 = 4 or n mod 6 = 5); # Muniru A Asiru, Feb 19 2019
CROSSREFS
Complement: A047243.
Sequence in context: A010419 A332486 A255137 * A284790 A172999 A354489
KEYWORD
nonn,easy
EXTENSIONS
More terms from Wesley Ivan Hurt, May 21 2016
STATUS
approved