OFFSET
0,5
COMMENTS
Sequence gives numerators; denominators are A001813.
REFERENCES
H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
LINKS
H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy)
EXAMPLE
1; -1/2 1/2; 1/12 -3/12 2/12; ...
MAPLE
with(linalg): b:=proc(n, k) if k<=n then binomial(n+k, k) else 0 fi end: bb:=(n, k)->b(n-1, k-1): B:=matrix(12, 12, bb): A:=inverse(B): a:=(n, k)->((2*n-2)!/(n-1)!)*A[n, k]: for n from 0 to 10 do seq(a(n, k), k=1..n) od; # yields sequence in triangular form - Emeric Deutsch
MATHEMATICA
max = 10; b[n_, k_] := If[k <= n, Binomial[n+k, k], 0]; BB = Table[b[n, k], {n, 0, max-1}, {k, 0, max-1}]; AA = Inverse[BB]; a[n_, k_] := ((2n-2)!/(n-1)!)*AA[[n, k]]; Flatten[ Table[ a[n, k], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Aug 08 2012, after Emeric Deutsch *)
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Jun 25 2005
STATUS
approved