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Abstract. This paper has been motivated by a study of binomial sums of the type

) (=3 ("1k>f(k)

k=0

with inverse of the form

) (2_;)_!';‘(") = ZA:g(k)

k=0

We sum special cases of (1) and develop the special properties of A} and then gen-
eralize to consider briefly the series transform

@ sm =S (“”””")f(k) i
2\ s

and its inverse in the form -a3< E
(4) f(ﬂ)f[ <a+ bJ+]> - iBn(a b)g(k) [/J‘_/ /;
j=1 J k=0 = - PN

This transform and its inverse are not available in the previously published papers of
the author. Effective recurrence relations for computation of the coefficients are given
along with tables of values.

1. Introduction

This paper has been motivated by an enquiry from John Wrench [9] who asked
me how to prove that

g,

=3

S,,=i(";k>2-"=2", n>0. (1.1) @
1

e

N

R

We discuss this and some variations and then generalize to consider the series
transform

o(n) =2<°”’:+")f(k> 12)

k=0

Utilitas Mathematica 45(1994), pp. 71-83



and its inver. \’Lhc form
n b . . n
s 17 *7) = 3 Brca ok a3
=1 k=0

This transform and its inverse are not available in my published papers con-
cerning inverse series pairs. See [3] for summary of most of my papers that would
be related to this. Also, (1.2)—(1.33) is not given by Riordan [7]. We concentrate
in some detail on the case wherea = 0,5 = 1.

2. Summation of Elementary Series
To prove (1.1) we will derive the recurrence relation

Sp1 =28, 2.1)

Then since Sp = 1, the desired formula follows at once by mathematical induc-
tion. The proof of (2.1) may be done as follows:

=S E{0) ())e

k=0 k=0
n+l n+1
n+ IC) —k <ﬂ+ k) —k
= E 2 + E 2
k=0 ( k e k-1

N /n+k 2n+1 S /n+1+k
= 2—k —n—1 —k—1
L)t (e ()

k=0 k=0
=S+<2"+1>2—'-1+ = <n+l+k>2_k
n
n+ 1 P k
cga (21, ] Sl /n+ 1+ k 5k
* n+ 1 k
k=0
_ 2n+ 2 n -l
n+ 1

_ 2n+ 1N\ __., 1 2n+ 2\, _,. o
'S"+<n+1>2 +§S"”_<n+1>2

N[

N

whence

1 2n+1 2n+ 2
_ _ = 2-n1 _ 2—»—2 =0.
ZS"J'1 Sn <'n+l> <n+l> 0
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Thus we have proved that Sy1 = 2.5, as desired.
For six references to (1.1) in the literature, see Hansen [4, (7.1.1U)].
We may use the same technique to prove that

2 /n+k
T“=§:5(nk >2-’==2"“, n>0 22)

Indeed

1
=Tn+ 5T

whence we have proved that
T =2T,. (23)
Since To = Y jeo2™% = 2, then T} = 4, etc. and in general by induction
Ta=2"11>0.
Note that the two sums S, and T, both satisfy the same recurrence relation, i.e.

f(n+ 1) =2f(n).
This may suggest that we may show that

Un(tc)=2(n+k)z"=(1—z)""”l, |zl < 1,

k=0 k

by the same technique.
Indeed, virtually the same steps we just used suffice to show that

Uns1(2) = Un(2) + zUn1(2),
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which yield«™
) Une1 (2) = (1 — 2) 7' Un(2). (2.5)

Since Up () = 37320 z* = (1 — )™, |z] < 1, then (2.4) follows by induction.

Of course, since
("’; ") - (—1)"(—”,: 1), (2.6)

it follows that we can evaluate (2.4) directly from the binomial theorem as follows:

ACESN B S0H(T e
k=0 k k=0 k
=2 <_nk_ 1>(_I)k =(1-™", <L
k=0

Next, let us be more ambitious and try to use the same technique to find a sum for

the finite series
W,.(.—;):Z(";k)z*, >0, @7
k=0

We find readily the recurrence relation

2n+ 1

(1 =)W1 (z) = Wa(z) + <n+ . )(1 -2z)z™!' n>0. (2.8)

Using this together with the fact that Wy = 1, we may calculate as many W's
as desired, but the recurrence (finite difference equation) does not have a simple
closed solution form of the sort we found before for Sa,Tn,orUp(z).

Let us next endeavor to find a generating function for Wa(z). We define

W(z,1) = > Wa(z)t". 2.9)

n=0

Then

W(z,0) =1+ 3 Wal(@)t" = 1413 Wa(z)t™!
n=1 n=1

]

[e ]
1+tEWn+1(z)t"

n=0
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Therefore »)

(1—2)W(z,t) =1—-z+ tZ(l — ) W1 (2)t*

n=0

1 —z+t2{Wn(z) + (211: 1>(1 —2z)z"+l}t"
n=0

©0 o0 1
1—z+ty Walz)t"+tz(1-22) (2“ )(tz)“
n=0

n=0 n

1—z+tW(z,t) + (1l -2z1) E (2’” 1>(tz)"”.
n=0

n

Thus we have

n

(1l—z—-t)W(z,t) =1—-z+(1 -22) <2n+1>(tz)"”. (2.10)

n=0

Since it is readily shown that

n

had —4z)"1/2
E<2n+l>zn=(l 22)Z , |z|<1/4’ (2'11)

n=0

then we find

1-475)"12 1
(1—x—t)W(I,t)=1—z+(1—2.7:)( ;
_ 1 -1/2
= E{l+(l—2$)(1—4tz) }
so that we have a formula for the generating function W(z, t):

_ —4 -1/2
Wz, = 22U 2(21zi(i_t)tz) . (2.12)

Thus W, (z) may be found as the coefficient of t™ in the formal power series
expansion of (2.12). As a partial check of (2.12), note that when z = 1/2 we get

W(1/2,%) = 5 _lzt =>@pr=d W)t
n=0 n=0

which gives W,,(1/2) = 2™ in agreement with our original formula (1.1). Also
W(0,t) = 145 = 32, t* so that W,(0) = 1 as is clear.
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Finally, noy g W(1,1) = U=t ol o ghe (37 1)4m by (2.11) so that
Wa(1) = (°7 ", Which gives the known binomial identity

k=0

Theorem (Gould [1, (1.78)]).

E(n;k>{(l—1)”lzk+z"”(l—:r)"}= 1. (2.14)
k=0

The proof is by extensive series manipulation.
If we replace z by 1/z this can be stated in the alternative equivalent form

i("2k>(z—l)m;?(z_l)k ey @.15)
k=0
In view of our definition (2.9), we may rewrite (2.14) as
(1 =)™ Wo(z) + s™'W,o(1 —2)=1. (2.16)
Theorem.
(1 =2)W(z,t) — (1 = 22)W(t, 7) = ﬁt_—t 2.17)

Proof. Recall (2.12) and note that the generating function is almost symmetric in
z and ¢. More precisely

(1 =2)W(z,t) — %

is symmetric in z and t. Relation (2.17) follows easily from this.

Theorem.
i L 2k+ 1
W, =W, —1+(2z-1 k¥l .
z§ () = Wa(z) — 1+ (22 )sz)( B >z (2.18)

Proof. From (2.8) we have

Wiri (2) = Wi(z) = sWear(2) + (1 - 22) 2"} <2kk+ 1).
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Sum both sides from & = 0 t0 k = n— 1, and we obtain (2.18) af .
Relation (2.18) allows us to write

n n—1
I;Wk(z) — Wa(z) =2(2z—1) E (2": l)z"— 1

k=0

so that by letting n — oo and using (2.11) we get

} _(2z-1(1 -4 -3

2.19)

m{zzm(m) ~ Wa(3) 3

k=0
By manipulating the binomial series [2, Vol II, pp.234-235] it is not difficult to
show that

1 2n\ ., <~/ 2n ghtn
mn =gt ()7L ()t e

3. A Special Binomial Series Transform and its Inverse
We now consider a series transform in a slightly more general setting. We define

om =3 (") sew 61

k=0
Here are some examples of this transform:
9(0) = £(0), :
o(1) = £(0) + 2£(D), é% CZ 7
9(2) = f(0) +3f(1) + 6 f(2)
9(3) = f(0) + 4 £(1) + 10 f(2) + 20 f(3),
g(4) = f(0) + 57(1) + 15 £(2) + 35 f(3) + 70/(4),

9(5) = f(0) + 6 £(1) + 21 £(2) + 56 £(3) + 126 £(4) + 252 f(5),
9(6) = f(0) + T (1) + 28 f(2) + 84 £(3) + 210 f(4) + 462 f(5) + 924 f(6),

Itis easily seen that an inverse exists and is unique, since we have a non-singular
linear transformation. By direct computations, the reader may verify the following
examples of the inverse:

£(0) = g(0), '
2£(1) = g(1) — ¢(0),
12 £(2) = 29(2) - 3g(1) + ¢(0),

120 £(3) = 69(3) — 10g(2) + 39(1) + ¢(0),
1680 f(4) = 24 g(4) — 429(3) + 10g(2) + 9¢(1) — g(0),
30240 £(5) = 1209(5) — 216 g(4) + 42¢(3) + S0g(2) + 21g(1) — 17¢(0),
665280 £(6) = 720g(6) — 1320g(5) + 216 g(4) + 294 g(3) + 230g(2) — 33g(1) — 107¢(0),



The inve. \ay be written conveniently in the form

2
B0 fay = 3> aa(h), (32)

k=0

where the coefficients A} are independent of f and g. The inverse is also non-
singular so (3.1) and (3.2) imply each other.

Except for obvious features (like e.g. A% = n!) the sequences which appear
along rows and diagonals are not listed in Sloane’s extensive index of sequences
[8], and so presumably little, if anything, has been said about these coefficients in
the literature.

The inverse pail(3.1)-(3.2) may be thought of in terms of matrices, one matrix
being the inverse of the other. For example, with n = 3:

10 0 O i 0 0 0 100 0
12 0 01||=-1/2 1/2 0 0o |[_lo 10 0
13 6 0 1/12 =3/12 2/12 0 00 10
1 4 10 20 | 1/120 3/120 —10/120 6/120 00 0 1

Finding the inverse (3.2) of transform (3.1) is equivalent to inverting the matrix
A = (ay;), where a;5 = (‘;’) when 0 < 1,; < nand a;; = 0 whenever j > 1.

Theorem.

(n)=1, n>0, impliesf(n) = &F { Loin=0 (3.3)
= impilie = = . .
gimy =0 w2 PSS =% = 6 itn>1

Proof. This can be seen when we set g(n) = 1 and compute f(n) directly by
solving (3.1) step by step to determine f(n). An immediale consequence of this
is that the As in any row sum to zero. That is, we have the

Theorem.

E Al = (3.4)

Proof. Set g(k) = 1, k£ > 0, in (3.2) and apply (3.3).
Recurrence relations for commmputation of the A’s:

J .
S ()= Ce o<icn (3.5)

k=0 k
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which allows a check across any row, and w‘

- n+k k' k_ ﬂ .
f‘.;< L )WA 5, 0<j<n (3.6)

which allows a check along any diagonal.

Relation (3.5) is obtained by substituting g(n) from (3.1) into (3.2) and noting
that all terms must vanish except the one that gives f(n). Similarly we may
substitute the value of f(n) from (3.2) into (3.1) and obtain (3.6).

When j = 0 in (3.5) we have an immediate proof of (3.4). The most effective
form of (3.6) is

n—1
n (n+ k)!
A= - f; WA} (B.7)
=j

We use this for a fixed n and successive values of ; to find row n and check it by
using (3.4).
Some other special case relations involving the A’s are as follows:

Ay=nl, n>0, 3.8.1

AL =—(2n—- DA ——(211— D(n=-1D!, =n>1,
(3.8.2)
A, =—A") =(20-3)(n-2)!, n>2, (3.8.3)

Al 3 =(2n—-5A") =(2n-5%*(n-3)!, n>3,
3.84)
Al 4, =(2n—8)AML + (2n-9A": n>4, (3.8.5)
The last relation appears neater when written as

AP = (20)A™? + (20— 1)A™? forn>0, (3.8.6)

We can offer other special identities involving the A} which we find from
special binomial identities. Our original motivating formula (1.1) is the case
f(n) =277, ¢g(n) = 2", Applying the inverse (3.2) we find at once that

S Apt= 2n)! =TIk~ (3.9)
k=1

I IJn
Py nl 2

so that this sum is equal to the product of the first n odd numbers.
Another special result follows by inversion of (2.13). Here f(n) = 1 and
g(n) = (2":1). Using the inverse (3.2) we find now that

ZA“<2k+l> (2:)! 2H(2k—1) (3.10)

k=0
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A curiou” )mi[y called to my attention by Donald Knuth [6], [1, (3.155)]

§<k><k+rﬁ>_<j><s+m s—j

prs ] m ] m m+ 7+ 1

gives the special case (whens=n+ 1, m = n)
z":(n+k><k>_<n+l><2n+l n—7+1
pre k J J n n+j+1

which includes (2.13) as the special instance when j
of n, we may invert (3.12) by (3.2) and obtain

E":A,,<k+1 2k+1Nk—j7+1 /n\(2n)!
A k k+j+1 \j/) = °

k=0

)

(3.11)

(3.12)

0. Since (¥) is independent

(3.13)

which gives a kind of expansion of the binomial coefficient (;‘) in terms of the A}

coefficients.

4. The General Binomial Transform and its Inverse
For the more general binomial series transform (1.2)

\/a+bk+n
g(n) = ( L )f(k)
k=0
and its inverse (1.3)
n + b . + . n
I (“ 7 ’) = 3" Bp(a,b)g(k)
=1 J k=0
we can establish the same principle as (3.3) i.e.:

1 ifa=0

g(n) =1, n>0 implies n =5n={
p f(n) =& 0 ifn>1

provided that

f(n)H(“”}“’)#o.

j=1
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@.1)

4.2)

b)

Then in analogy to (3.4) we can show easily that )
n
> Bi(a,b) = 8. 4.3)
k=0

Recurrence relations for effective computation of the Bs may be found in the
same way that the special cases (3.5) and (3.6) were found. These are:

i +bj+k\ . ZT7 o+ bi+d
E("; )Bk(a,b)=5,-1__[< ‘. ) “4)

k=j i=]
and k 1
. fa+bk+n\ _; a+bi+i\" _
kE( . >B)-(a,b)1__l[< ; > = &. 4.5)
iy -

Here is a short table of the general inverse (1.3):

£(0) = g(0),
(“”{”)ﬂl) = g(1) = (0),

<a+1;+1> <a+226+2>f(2) ) (a+?+1>g(2) ~ <a+1;+2>g(1)+g(0)
a+b+1\ [a+2b+2 ) {a+3b+3 _fa+b+ 1) fa+2b+2
() )= ()

B <a+11>+ l) <°+22b+3>g(2)+ “"'221”'2 (a+3)g()+ a+22b+2 (a+2b-1)g(0).

Leting a = 0 and b = 1 in these we recover the first few lines of the pervious table
for the inverse transform (3.2), however A} differs from B}(a, b) in that certain
factors have been removed in this special case allowing a simpler algebraic form
for the As. .

Write P,(a,b) = []5; (** ':.‘“). Then consider the table of values:

i=1

I
0 1 1 1
1 2 2 1
2 12 12 1
3 240 120 2
4 16800 1680 10
5 4233600 30240 140
6 3911846400 665280 5880
7 671272842240 17297280 38808

‘l’ prets s AN

AoEss @ 4 ;L@%Q



<k<n<10

Array of the coefficients A} for 0

-10

10 -42 24
42 -216 120

50

21

-17

-1320 720

1320

230 294 216

-33

-107

-1173 670 1974 1944 -9360 5040
9360

-415

40320

-75600

17064 14520

-4510 11130
-131230 20202

-13515

1231

121680 75600  -685440 362880
685440

157080

136296

-113739

56671

3628800

6894720

1134000

901698 768312 1601160 1563120

-1976570

-532209

924365
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The numbers in the right-hand column are given by )
nl P(0,1) 1 T (2i @)
(2n)! w11 \d ’
1=1
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