[go: up one dir, main page]

login
A046818
Number of 1's in binary expansion of 3n+1.
2
1, 1, 3, 2, 3, 1, 3, 3, 3, 3, 5, 2, 3, 2, 4, 4, 3, 3, 5, 4, 5, 1, 3, 3, 3, 3, 5, 3, 4, 3, 5, 5, 3, 3, 5, 4, 5, 3, 5, 5, 5, 5, 7, 2, 3, 2, 4, 4, 3, 3, 5, 4, 5, 2, 4, 4, 4, 4, 6, 4, 5, 4, 6, 6, 3, 3, 5, 4, 5, 3, 5, 5, 5, 5, 7, 4, 5, 4, 6, 6, 5, 5, 7, 6, 7, 1, 3, 3, 3, 3, 5, 3, 4
OFFSET
0,3
LINKS
S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
FORMULA
a(n) = A000120(3n+1).
a(n) = A240883(n) + 1. - Reinhard Zumkeller, Apr 14 2014
MATHEMATICA
Table[Count[IntegerDigits[3 n + 1, 2], 1], {n, 0, 92}] (* Jayanta Basu, Jun 29 2013 *)
DigitCount[#, 2, 1]&/@(3Range[0, 100]+1) (* Harvey P. Dale, Apr 03 2021 *)
PROG
(Haskell)
a046818 = a000120 . a016777 -- Reinhard Zumkeller, Apr 14 2014
CROSSREFS
Cf. A000120, A016777 (3n+1).
Sequence in context: A316830 A345440 A283976 * A177462 A106584 A213940
KEYWORD
nonn,base
STATUS
approved