[go: up one dir, main page]

login
A046816
Pascal's tetrahedron: entries in 3-dimensional version of Pascal triangle, or trinomial coefficients.
24
1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 3, 3, 6, 3, 1, 3, 3, 1, 1, 4, 4, 6, 12, 6, 4, 12, 12, 4, 1, 4, 6, 4, 1, 1, 5, 5, 10, 20, 10, 10, 30, 30, 10, 5, 20, 30, 20, 5, 1, 5, 10, 10, 5, 1, 1, 6, 6, 15, 30, 15, 20, 60, 60, 20, 15, 60, 90, 60, 15, 6, 30, 60, 60, 30, 6, 1, 6, 15, 20, 15, 6, 1
OFFSET
0,6
COMMENTS
Greatest numbers in each 2D triangle form A022916 (multinomial coefficient n!/([n/3]![(n+1)/3]![(n+2)/3]!).) 2D triangle sums are powers of 3. - Gerald McGarvey, Aug 15 2004
T(n,j,k) is the number of lattice paths from (0,0,0) to (n,j,k) with steps (1,0,0), (1,1,0) and (1,1,1). - Dimitri Boscainos, Aug 16 2015
T(n,j,k) is the number of k-dimensional hyperfaces in an n-dimensional hypercube at an edge distance of j from a given vertex. For example, the number of 2D faces in a 3D cube touching a given vertex is T(3,0,2) = 3, and the number of 3D cube 1D edges at a separation of 1 edge from a given vertex is T(3,1,1) = 6. - Eitan Y. Levine, Jul 22 2023
The sums along vertical lines within each slice (when oriented as in the example) give A027907. See "vertical sums" link. - Eitan Y. Levine, May 17 2023
REFERENCES
Marco Costantini: Metodo per elevare qualsiasi trinomio a qualsiasi potenza. Archimede, rivista per gli insegnanti e i cultori di matematiche pure e applicate, anno XXXVIII ottobre-dicembre 1986, pp. 205-209. [Vincenzo Librandi, Jul 19 2009]
FORMULA
Coefficients of x, y, z in (x+y+z)^n: Let T'(n; i,j,k) := T(n, j,k) where i = n-(j+k). Then T'(n+1; i,j,k) = T'(n; i-1,j,k)+T'(n; i,j-1,k)+T'(n; i,j,k-1), T'(n; i,j,-1) := 0, T'(n; i,j,k) is invariant under permutations of (i,j,k); T'(0, 0, 0)=1.
T'(n; i,j,k) = n!/(i!*j!*k!) and (x+y+z)^n = Sum_{i+j+k=n; 0 <= i,j,k <= n} T'(n; i,j,k)*x^i*y^j*z^k. Hence Sum_{i+j+k=n; 0 <= i,j,k <= n} T'(n; i,j,k) = 3^n. - Gregory Gerard Wojnar, Oct 08 2020
G.f.: 1/(1-x-x*y-x*y*z). - Georg Fischer, May 29 2019
T(n,j,k) = C(n,j) * C(n-j,k), where C(a,b) are the binomial coefficients, elements of A007318. In particular, T(n,j,0) = C(n,j). - Eitan Y. Levine, Jul 22 2023
(-1)^n * Sum_{i=ceiling(n/k),n} (-1)^i * T(i*k,n-i,i) = k^n, for n,k > 0. - Eitan Y. Levine, Aug 31 2023
EXAMPLE
The first few slices of the tetrahedron (or pyramid) are:
1
-----------------
1
1 1
-----------------
1
2 2
1 2 1
-----------------
1 .... Here is the third slice of the pyramid
3 3
3 6 3
1 3 3 1
----------------
...
MAPLE
p:= proc(i, j, k) option remember;
if k<0 or i<0 or i>k or j<0 or j>i then 0
elif {i, j, k}={0} then 1
else p(i, j, k-1) +p(i-1, j, k-1) +p(i-1, j-1, k-1)
fi
end:
seq(seq(seq(p(i, j, k), j=0..i), i=0..k), k=0..10);
# Alois P. Heinz, Apr 03 2011
MATHEMATICA
p[i_, j_, k_] := p[i, j, k] = Which[ k<0 || i<0 || i>k || j<0 || j>i, 0, {i, j, k} == {0, 0, 0}, 1, True, p[i, j, k-1] + p[i-1, j, k-1] + p[i-1, j-1, k-1]]; Table[p[i, j, k], {k, 0, 6}, {i, 0, k}, {j, 0, i}] // Flatten (* Jean-François Alcover, Dec 31 2012, translated from Alois P. Heinz's Maple program *)
(* or *)
Flatten[CoefficientList[CoefficientList[CoefficientList[Series[1/(1-x-x*y-x*y*z), {x, 0, 6}], x], y], z]] (* Georg Fischer, May 29 2019 *)
PROG
(Haskell)
a046816 n = a046816_list !! n
a046816_list = concat $ concat $ iterate ([[1], [1, 1]] *) [1]
instance Num a => Num [a] where
fromInteger k = [fromInteger k]
(p:ps) + (q:qs) = p + q : ps + qs
ps + qs = ps ++ qs
(p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
_ * _ = []
-- Reinhard Zumkeller, Apr 02 2011
CROSSREFS
Entry [3, 2] in each slice gives A002378, entry [4, 3] in each slice gives A027480, entry [5, 2] in each slice gives A033488, entry [5, 3] in each slice gives A033487.
See A268240 for this read mod 2.
Cf. A013609 (row sums).
Sequence in context: A178819 A369174 A355855 * A352248 A301475 A138328
KEYWORD
nonn,tabf,look,easy
AUTHOR
STATUS
approved