[go: up one dir, main page]

login
A046773
Number of partitions of n with equal number of parts congruent to each of 0, 1, 3 and 4 (mod 5).
2
1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 3, 3, 7, 4, 8, 5, 9, 15, 11, 20, 13, 22, 34, 24, 49, 30, 55, 67, 59, 103, 76, 120, 139, 129, 211, 170, 253, 276, 277, 409, 373, 498, 554, 558, 787, 762, 962, 1079, 1100, 1475, 1513, 1799, 2079, 2095, 2747, 2882, 3325
OFFSET
0,13
LINKS
FORMULA
G.f.: (Sum_{k>=0} x^(13*k)/(Product_{j=1..k} 1 - x^(5*j))^3)/(Product_{j>=0} 1 - x^(5*j+2)). - Andrew Howroyd, Sep 16 2019
PROG
(PARI) seq(n)={Vec(sum(k=0, n\13, x^(13*k)/prod(j=1, k, 1 - x^(5*j) + O(x*x^n))^4)/prod(j=0, n\5, 1 - x^(5*j+2) + O(x*x^n)))} \\ Andrew Howroyd, Sep 16 2019
CROSSREFS
Cf. A046765.
Sequence in context: A204597 A285734 A051698 * A175402 A281726 A101037
KEYWORD
nonn
STATUS
approved