[go: up one dir, main page]

login
A046771
Number of partitions of n with equal number of parts congruent to each of 0, 1, 2 and 3 (mod 5).
2
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 5, 1, 2, 2, 6, 11, 3, 3, 7, 16, 23, 8, 9, 18, 38, 44, 24, 21, 44, 79, 86, 59, 52, 96, 157, 163, 141, 118, 199, 295, 318, 304, 259, 387, 549, 613, 632, 534, 736, 1006, 1179, 1240, 1070, 1364, 1842, 2217, 2366, 2074, 2508
OFFSET
0,17
LINKS
FORMULA
G.f.: (Sum_{k>=0} x^(11*k)/(Product_{j=1..k} 1 - x^(5*j))^3)/(Product_{j>=0} 1 - x^(5*j+4)). - Andrew Howroyd, Sep 16 2019
PROG
(PARI) seq(n)={Vec(sum(k=0, n\11, x^(11*k)/prod(j=1, k, 1 - x^(5*j) + O(x*x^n))^4)/prod(j=0, n\5, 1 - x^(5*j+4) + O(x*x^n)))} \\ Andrew Howroyd, Sep 16 2019
CROSSREFS
Cf. A046765.
Sequence in context: A140987 A097562 A275889 * A029762 A222214 A055185
KEYWORD
nonn
STATUS
approved