[go: up one dir, main page]

login
A046144
Number of primitive roots modulo n.
24
1, 1, 1, 1, 2, 1, 2, 0, 2, 2, 4, 0, 4, 2, 0, 0, 8, 2, 6, 0, 0, 4, 10, 0, 8, 4, 6, 0, 12, 0, 8, 0, 0, 8, 0, 0, 12, 6, 0, 0, 16, 0, 12, 0, 0, 10, 22, 0, 12, 8, 0, 0, 24, 6, 0, 0, 0, 12, 28, 0, 16, 8, 0, 0, 0, 0, 20, 0, 0, 0, 24, 0, 24, 12, 0, 0, 0, 0, 24, 0, 18, 16, 40, 0, 0, 12, 0, 0, 40, 0, 0
OFFSET
1,5
LINKS
S. R. Finch, Idempotents and Nilpotents Modulo n, arXiv:math/0605019 [math.NT], 2006-2017.
Eric Weisstein's World of Mathematics, Primitive Root.
FORMULA
a(n) is equal to A010554(n) unless n is a term of A033949, in which case a(n)=0.
MAPLE
A046144 := proc(n)
local a, eulphi, m;
if n = 1 then
return 1;
end if;
eulphi := numtheory[phi](n) ;
a := 0 ;
for m from 0 to n-1 do
if numtheory[order](m, n) = eulphi then
a := a + 1 ;
end if;
end do:
a;
end proc: # R. J. Mathar, Jan 12 2016
MATHEMATICA
Prepend[ Table[ If[ IntegerQ[ PrimitiveRoot[n]] , EulerPhi[ EulerPhi[n]], 0], {n, 2, 91}], 1] (* Jean-François Alcover, Sep 13 2011 *)
PROG
(PARI) for(i=1, 100, p=0; for(q=1, i, if(gcd(q, i)==1 && znorder(Mod(q, i)) == eulerphi(i), p++)); print1(p, ", ")) /* V. Raman, Nov 22 2012 */
(PARI) a(n) = my(s=znstar(n)); if(#(s.cyc)>1, 0, eulerphi(s.no)) \\ Jeppe Stig Nielsen, Oct 18 2019
(Perl) use ntheory ":all"; my @A = map { !defined znprimroot($_) ? 0 : euler_phi(euler_phi($_)); } 0..10000; say "$_ $A[$_]" for 1..$#A; # Dana Jacobsen, Apr 28 2017
KEYWORD
nonn
STATUS
approved