[go: up one dir, main page]

login
A038041
Number of ways to partition an n-set into subsets of equal size.
122
1, 2, 2, 5, 2, 27, 2, 142, 282, 1073, 2, 32034, 2, 136853, 1527528, 4661087, 2, 227932993, 2, 3689854456, 36278688162, 13749663293, 2, 14084955889019, 5194672859378, 7905858780927, 2977584150505252, 13422745388226152, 2, 1349877580746537123, 2
OFFSET
1,2
COMMENTS
a(n) = 2 iff n is prime with a(p) = card{ 1|2|3|...|p-1|p, 123...p } = 2. - Bernard Schott, May 16 2019
FORMULA
a(n) = Sum_{d divides n} (n!/(d!*((n/d)!)^d)).
E.g.f.: Sum_{k >= 1} (exp(x^k/k!)-1).
EXAMPLE
a(4) = card{ 1|2|3|4, 12|34, 14|23, 13|24, 1234 } = 5.
From Gus Wiseman, Jul 12 2019: (Start)
The a(6) = 27 set partitions:
{{1}{2}{3}{4}{5}{6}} {{12}{34}{56}} {{123}{456}} {{123456}}
{{12}{35}{46}} {{124}{356}}
{{12}{36}{45}} {{125}{346}}
{{13}{24}{56}} {{126}{345}}
{{13}{25}{46}} {{134}{256}}
{{13}{26}{45}} {{135}{246}}
{{14}{23}{56}} {{136}{245}}
{{14}{25}{36}} {{145}{236}}
{{14}{26}{35}} {{146}{235}}
{{15}{23}{46}} {{156}{234}}
{{15}{24}{36}}
{{15}{26}{34}}
{{16}{23}{45}}
{{16}{24}{35}}
{{16}{25}{34}}
(End)
MAPLE
A038041 := proc(n) local d;
add(n!/(d!*(n/d)!^d), d = numtheory[divisors](n)) end:
seq(A038041(n), n = 1..29); # Peter Luschny, Apr 16 2011
MATHEMATICA
a[n_] := Block[{d = Divisors@ n}, Plus @@ (n!/(#! (n/#)!^#) & /@ d)]; Array[a, 29] (* Robert G. Wilson v, Apr 16 2011 *)
Table[Sum[n!/((n/d)!*(d!)^(n/d)), {d, Divisors[n]}], {n, 1, 31}] (* Emanuele Munarini, Jan 30 2014 *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Length[Select[sps[Range[n]], SameQ@@Length/@#&]], {n, 0, 8}] (* Gus Wiseman, Jul 12 2019 *)
PROG
(PARI) /* compare to A061095 */
mnom(v)=
/* Multinomial coefficient s! / prod(j=1, n, v[j]!) where
s= sum(j=1, n, v[j]) and n is the number of elements in v[]. */
sum(j=1, #v, v[j])! / prod(j=1, #v, v[j]!)
A038041(n)={local(r=0); fordiv(n, d, r+=mnom(vector(d, j, n/d))/d!); return(r); }
vector(33, n, A038041(n)) /* Joerg Arndt, Apr 16 2011 */
(Maxima) a(n):= lsum(n!/((n/d)!*(d!)^(n/d)), d, listify(divisors(n)));
makelist(a(n), n, 1, 40); /* Emanuele Munarini, Feb 03 2014 */
(Python)
import math
def a(n):
count = 0
for k in range(1, n + 1):
if n % k == 0:
count += math.factorial(n) // (math.factorial(k) ** (n // k) * math.factorial(n // k))
return count # Paul Muljadi, Sep 25 2024
CROSSREFS
Cf. A061095 (same but with labeled boxes), A005225, A236696, A055225, A262280, A262320.
Column k=1 of A208437.
Row sums of A200472 and A200473.
Cf. A000110, A007837 (different lengths), A035470 (equal sums), A275780, A317583, A320324, A322794, A326512 (equal averages), A326513.
Sequence in context: A324505 A226135 A284464 * A197591 A097891 A097611
KEYWORD
nonn,easy
EXTENSIONS
More terms from Erich Friedman
STATUS
approved