[go: up one dir, main page]

login
A037980
a(n) = (1/16)*( binomial(4*n, 2*n) - (-1)^n*binomial(2*n, n) + (1-(-1)^n)*binomial(2*n, n)^2 ).
2
0, 1, 4, 109, 800, 19501, 168952, 3979830, 37566720, 862687045, 8615396504, 193710517650, 2015475061184, 44516469004294, 478043160040240, 10399216983867484, 114539008771344384, 2459029841101222485, 27657033766735102744, 586949749681986718650, 6719200545824895620800, 141147097812860184921810
OFFSET
0,3
REFERENCES
The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972. (see Identity (3.75) divided by four in H. W. Gould, Combinatorial Identities, Morgantown, 1972, page 31.)
LINKS
FORMULA
From G. C. Greubel, Jun 22 2022: (Start)
a(n)= A037976(n)/4.
a(n) = (1/4)*Sum_{k=0..floor((n-1)/2)} binomial(2*n, 2*k+1)^2.
a(n) = (1/16)*( (2*n+1)*A000108(2*n) - (-1)^n*(n+1)*A000108(n) + (1-(-1)^n)*(n+1)^2*A000108(n)^2 ).
G.f.: (1/16)*(sqrt(1 + sqrt(1-16*x))/(sqrt(2)*sqrt(1-16*x)) - 1/sqrt(1+4*x)) + (1/(8*Pi))*( EllipticK(16*x) - EllipticK(-16*x)). (End)
MAPLE
A037980 := proc(n)
binomial(4*n, 2*n) -(-1)^n*binomial(2*n, n)+(1-(-1)^n)*binomial(2*n, n)^2 ;
%/16 ;
end proc: # R. J. Mathar, Oct 20 2015
MATHEMATICA
With[{B=Binomial}, Table[(1/16)*(B[4*n, 2*n] +B[2*n, n]^2 -2*(-1)^n*B[B[2*n, n] +1, 2]), {n, 0, 30}]] (* G. C. Greubel, Jun 22 2022 *)
PROG
(Magma) [(1/16)*((2*n+1)*Catalan(2*n) -(-1)^n*(n+1)*Catalan(n) +(1-(-1)^n)*(n+1)^2*Catalan(n)^2): n in [0..30]]; // G. C. Greubel, Jun 22 2022
(SageMath) b=binomial; [(1/16)*(b(4*n, 2*n) -(-1)^n*b(2*n, n) +(1-(-1)^n)*b(2*n, n)^2) for n in (0..30)] # G. C. Greubel, Jun 22 2022
CROSSREFS
Sequence in context: A259373 A076265 A114876 * A240626 A297916 A298541
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Jun 22 2022
STATUS
approved