[go: up one dir, main page]

login
A033579
Four times pentagonal numbers: a(n) = 2*n*(3*n-1).
24
0, 4, 20, 48, 88, 140, 204, 280, 368, 468, 580, 704, 840, 988, 1148, 1320, 1504, 1700, 1908, 2128, 2360, 2604, 2860, 3128, 3408, 3700, 4004, 4320, 4648, 4988, 5340, 5704, 6080, 6468, 6868, 7280, 7704, 8140, 8588, 9048, 9520, 10004, 10500, 11008, 11528, 12060
OFFSET
0,2
COMMENTS
Subsequence of A062717: A010052(6*a(n)+1) = 1. - Reinhard Zumkeller, Feb 21 2011
Sequence found by reading the line from 0, in the direction 0, 4, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Number.
Wikipedia, Pentagonal number.
FORMULA
a(n) = 4*n*(3*n-1)/2 = 6*n^2 - 2*n = 4*A000326(n). - Omar E. Pol, Dec 11 2008
a(n) = 2*A049450(n). - Omar E. Pol, Dec 13 2008
a(n) = a(n-1) + 12*n - 8 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = A014642(n)/2. - Omar E. Pol, Aug 19 2011
G.f.: x*(4+8*x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
a(n) = A191967(2*n). - Reinhard Zumkeller, Jul 07 2012
a(n) = A181617(n+1) - A181617(n). - J. M. Bergot, Jun 28 2013
a(n) = (A174371(n) - 1)/6. - Miquel Cerda, Jul 28 2016
From Ilya Gutkovskiy, Jul 28 2016: (Start)
E.g.f.: 2*x*(2 + 3*x)*exp(x).
a(n+1) = Sum_{k=0..n} A017569(k).
Sum_{i>0} 1/a(i) = (9*log(3) - sqrt(3)*Pi)/12 = 0.3705093754425278... (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(2*sqrt(3)) - log(2). - Amiram Eldar, Feb 20 2022
MAPLE
seq(4*binomial(3*n, 2)/3, n=0..45); # G. C. Greubel, Oct 09 2019
MATHEMATICA
4 PolygonalNumber[5, Range[0, 45]] (* Michael De Vlieger, Aug 02 2016, Version 10.4 *)
PROG
(PARI) a(n)=2*n*(3*n-1) \\ Charles R Greathouse IV, Jun 28 2013
(Magma) [4*Binomial(3*n, 2)/3: n in [0..45]]; // G. C. Greubel, Oct 09 2019
(Sage) [4*binomial(3*n, 2)/3 for n in (0..45)] # G. C. Greubel, Oct 09 2019
(GAP) List([0..45], n-> 4*Binomial(3*n, 2)/3 ); # G. C. Greubel, Oct 09 2019
KEYWORD
nonn,easy
EXTENSIONS
More terms from Michel Marcus, Mar 04 2014
STATUS
approved