OFFSET
1,2
COMMENTS
Terms are divisible neither by 4 nor by a prime of the form 4*k + 3 (although these conditions are not sufficient - compare A031398). - Lekraj Beedassy, Aug 17 2005
REFERENCES
Harvey Cohn, "Advanced Number Theory".
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Dmitry Berdinsky, Prohrak Kruengthomya, Nonstandard Cayley automatic representations of fundamental groups, arXiv:2001.04743 [math.GR], 2020.
Dmitry Berdinsky, Prohrak Kruengthomya, Nonstandard Cayley Automatic Representations for Fundamental Groups of Torus Bundles over the Circle, International Conference on Language and Automata Theory and Applications (LATA 2020): Language and Automata Theory and Applications, Lecture Notes in Computer Science, Vol 12038. Springer, Cham, 115-127.
Hsin-Te Chiang, Mei-Ru Ciou, Chia-Ling Tsai, Yuh-Jenn Wu, Chiun-Chang Lee, On negative Pell equations: Solvability and unsolvability in integers, Notes on Number Theory and Discrete Mathematics (2018) Vol. 24, No. 3, 10-26.
S. R. Finch, Class number theory [Cached copy, with permission of the author]
D. Khurana and T. Y. Lam, Invertible commutators in matrix rings, J. Algebra and Applications, 10 (211), 51-71.
K. Lakshmi, R. Someshwari, On The Negative Pell Equation y^2 = 72x^2 - 23, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 7, July (2016).
Morris Newman, A note on an equation related to the Pell equation, The American Mathematical Monthly 84.5 (1977): 365-366.
R. Suganya, D. Maheswari, On the Negative Pellian Equation y^2 = 110 * x^2 - 29, Journal of Mathematics and Informatics, Vol. 11 (2017), pp. 63-71.
A. Vijayasankar, M. A. Gopalan, V. Krithika, On The Negative Pell Equation y^2 = 112 * x^2 - 7, International Journal of Engineering and Applied Sciences (IJEAS 2017), Vol. 4, Issue 7, 11-14.
MATHEMATICA
fQ[n_] := Solve[x^2 + 1 == n*y^2, {x, y}, Integers] != {}; Select[ Range@ 300, fQ] (* Robert G. Wilson v, Dec 19 2013 *)
PROG
(Sage)
def is_A031396(k):
if k==1: return True
if Integer(k).is_square(): return False
K.<a> = QuadraticField(k)
return continued_fraction(a).period_length()%2
print([k for k in range(1, 1000) if is_A031396(k)]) # Robin Visser, Nov 02 2024
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
STATUS
approved