OFFSET
0,26
REFERENCES
M. Gardner, Fractal Music, Hypercards and More Mathematical Recreations from Scientific American, Persistence of Numbers, pp. 120-1; 186-7, W. H. Freeman NY 1992.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10000
Gabriel Bonuccelli, Lucas Colucci, and Edson de Faria, On the Erdős-Sloane and Shifted Sloane Persistence, arXiv:2009.01114 [math.NT], 2020.
Eric Brier, Christophe Clavier, Linda Gutsche and David Naccache, The Multiplicative Persistence Conjecture Is True for Odd Targets, arXiv:2110.04263 [math.NT], 2021.
M. R. Diamond, Multiplicative persistence base 10: some new null results.
N. J. A. Sloane, The persistence of a number, J. Recreational Math., 6 (1973), 97-98.
Eric Weisstein's World of Mathematics, Multiplicative Persistence
FORMULA
Probably bounded, see A003001. - Charles R Greathouse IV, Nov 15 2022
EXAMPLE
For n = 999: A007954(999) = 729, A007954(729) = 126, A007954(126) = 12 and A007954(12) = 2. The fourth iteration of "multiply digits" yields a single-digit number, so a(999) = 4. - Felix Fröhlich, Jul 17 2016
MAPLE
A007954 := proc(n) return mul(d, d=convert(n, base, 10)): end: A031346 := proc(n) local k, m: k:=0:m:=n: while(length(m)>1)do m:=A007954(m):k:=k+1: od: return k: end: seq(A031346(n), n=0..100); # Nathaniel Johnston, May 04 2011
MATHEMATICA
Table[Length[NestWhileList[Times@@IntegerDigits[#]&, n, #>=10&]], {n, 0, 100}]-1 (* Harvey P. Dale, Aug 27 2016 *)
PROG
(Python)
from operator import mul
from functools import reduce
def A031346(n):
mp = 0
while n > 9:
n = reduce(mul, (int(d) for d in str(n)))
mp += 1
return mp
# Chai Wah Wu, Aug 23 2014
(PARI) a007954(n) = my(d=digits(n)); prod(i=1, #d, d[i])
a(n) = my(k=n, i=0); while(#Str(k) > 1, k=a007954(k); i++); i \\ Felix Fröhlich, Jul 17 2016
(Magma) f:=func<n|&*Intseq(n)>; a:=[]; for n in [0..100] do s:=0; k:=n; while k ge 10 do s:=s+1; k:=f(k); end while; Append(~a, s); end for; a; // Marius A. Burtea, Jan 12 2020
CROSSREFS
KEYWORD
nonn,easy,base,changed
AUTHOR
STATUS
approved