[go: up one dir, main page]

login
A029730
Numbers that are palindromic in base 16.
10
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 417, 433, 449, 465, 481, 497, 514, 530, 546, 562, 578, 594, 610, 626, 642
OFFSET
1,3
LINKS
Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
Eric Weisstein's World of Mathematics, Palindromic Number.
Eric Weisstein's World of Mathematics, Hexadecimal.
Wikipedia, Palindromic number.
Wikipedia, Hexadecimal.
FORMULA
Sum_{n>=2} 1/a(n) = 3.71109616... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
EXAMPLE
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 11, 22, 33, 44, 55, 66, 77, 88, 99, AA, BB, CC, DD, EE, FF, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191,1A1, 1B1, 1C1, 1D1, 1E1, 1F1, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 2A2, 2B2, 2C2, 2D2, 2E2, 2F2, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 3A3, 3B3, 3C3, 3D3, 3E3, 3F3, 404, ... - Reinhard Zumkeller, Sep 23 2015
MATHEMATICA
palindromicQ[n_, b_] := Module[{i = IntegerDigits[n, b]}, i == Reverse[i]]; Select[Range[1000], palindromicQ[#, 16] &] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
PROG
(Haskell)
a029730 n = a029730_list !! (n-1)
a029730_list = map (foldr (\h v -> 16 * v + h) 0) $
filter (\xs -> xs == reverse xs) a262437_tabf
-- Reinhard Zumkeller, Sep 23 2015
(PARI) isok(n) = my(v=digits(n, 16)); v == Vecrev(v); \\ Michel Marcus, Sep 30 2018
(Python)
def A029730(n):
if n == 1: return 0
y = (x:=1<<(n.bit_length()-2&-4))<<4
return (c:=n-x)*x+int(hex(c)[-2:1:-1]or'0', 16) if n<x+y else (c:=n-y)*y+int(hex(c)[-1:1:-1]or'0', 16) # Chai Wah Wu, Jun 13 2024
CROSSREFS
Cf. A029731 (also palindromic in decimal), A056962, A262437.
Sequence in context: A048313 A043719 A296759 * A297289 A048327 A048340
KEYWORD
nonn,base
STATUS
approved