[go: up one dir, main page]

login
A029715
a(n) = Sum_{k divides 2^n} S(k), where S is the Kempner function A002034.
2
1, 3, 7, 11, 17, 25, 33, 41, 51, 63, 75, 89, 105, 121, 137, 153, 171, 191, 211, 233, 257, 281, 305, 331, 359, 387, 417, 449, 481, 513, 545, 577, 611, 647, 683, 721, 761, 801, 841, 883, 927, 971, 1017, 1065, 1113, 1161, 1209, 1259, 1311, 1363, 1417, 1473, 1529
OFFSET
0,2
MAPLE
A002034 := proc(n) local m; m :=1 ; while type(factorial(m)/n, 'integer') = false do m := m+1 ; od ; RETURN(m) ; end: A029715 := proc(n) local a, i; a :=0 ; for i from 0 to n do a := a+A002034(2^i) ; od ; RETURN(a) ; end: for n from 0 to 80 do printf("%d, ", A029715(n)) ; od ; # R. J. Mathar, Jun 06 2007
MATHEMATICA
S[n_] := S[n] = Module[{k = 1}, While[True, If[Divisible[k!, n], Return[k], k++]]];
a[n_] := S /@ Divisors[2^n] // Total;
a /@ Range[0, 52] (* Jean-François Alcover, Nov 17 2020 *)
CROSSREFS
Sequence in context: A180452 A294479 A331968 * A088803 A350146 A194069
KEYWORD
nonn
AUTHOR
Norbert Hungerbuhler (buhler(AT)math.ethz.ch)
EXTENSIONS
More terms from R. J. Mathar, Jun 06 2007
STATUS
approved