[go: up one dir, main page]

login
A028229
Call m Egyptian if we can partition m = x_1+x_2+...+x_k into positive integers x_i such that Sum_{i=1..k} 1/x_i = 1; sequence gives all non-Egyptian numbers.
5
2, 3, 5, 6, 7, 8, 12, 13, 14, 15, 19, 21, 23
OFFSET
1,1
COMMENTS
Graham showed that every number >=78 is strict-sense Egyptian.
REFERENCES
J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 147.
See also R. K. Guy, Unsolved Problems Number Theory, Sect. D11.
LINKS
R. L. Graham, A theorem on partitions, J. Austral. Math. Soc. 3:4 (1963), pp. 435-441. doi:10.1017/S1446788700039045
Eric Weisstein's World of Mathematics, Egyptian Number.
EXAMPLE
1=1/3+1/3+1/3, so 3+3+3=9 is Egyptian.
MATHEMATICA
egyptianQ[n_] := Select[ IntegerPartitions[n], Total[1/#] == 1 &, 1] =!= {}; A028229 = Reap[ Do[ If[ !egyptianQ[n], Sow[n]], {n, 1, 40}]][[2, 1]] (* Jean-François Alcover, Feb 23 2012 *)
CROSSREFS
Cf. A051882. Complement gives A125726.
Sequence in context: A285528 A151894 A352328 * A104452 A335073 A344514
KEYWORD
nonn,fini,full,nice
STATUS
approved