OFFSET
0,3
COMMENTS
Number of compositions of n with at least one even part (offset 2). - Vladeta Jovovic, Dec 29 2004
Starting with "1" = eigensequence of a triangle with the Fibonacci series as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010
An elephant sequence, see A175654. For the corner squares 24 A[5] vectors, with decimal values between 11 and 416, lead to this sequence (without the leading 0). For the central square these vectors lead to the companion sequence A099036 (without the first leading 1). - Johannes W. Meijer, Aug 15 2010
a(n) = Sum_{k=1..n} A108617(n,k) / 2. - Reinhard Zumkeller, Oct 07 2012
a(n) is the number of binary strings that contain the substring 11 or end in 1. a(3) = 5 because we have: 001, 011, 101, 110, 111. - Geoffrey Critzer, Jan 04 2014
a(n-1), n >= 1, is the number of nonexisting (due to the maturation delay) "[male-female] pairs of Fibonacci rabbits" at the beginning of the n-th month. - Daniel Forgues, May 06 2015
a(n-1) is the number of subsets of {1,2,..,n} that contain n that have at least one pair of consecutive integers. For example, for n=5, a(4) = 11 and the 11 subsets are {4,5}, {1,2,5}, {1,4,5}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}. Note that A008466(n) is the number of all subsets of {1,2,..,n} that have at least one pair of consecutive integers. - Enrique Navarrete, Aug 15 2020
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Patrick Letendre, Polynomials with integer roots, arXiv:1911.00480 [math.NT], 2019. See p. 4.
Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3.
OEIS Wiki, Fibonacci rabbits
Index entries for linear recurrences with constant coefficients, signature (3,-1,-2).
FORMULA
a(n) = Sum_{j=0..floor(n/2)} Sum_{k=0..n-2*j} binomial(n-j, n-2*j-k). - Paul Barry, Feb 07 2003
From Paul Barry, Jan 23 2004: (Start)
Row sums of A105809.
G.f.: x*(1-x)/((1-2*x)*(1-x-x^2)).
a(n) = 2^n - Fibonacci(n+1). (End) - corrected Apr 06 2006 and Oct 05 2012
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(n-k, k+j). - Paul Barry, Aug 29 2004
a(n) = (Sum of (n+1)-th row of the triangle in A108617) / 2. - Reinhard Zumkeller, Jun 12 2005
a(n) = term (1,1) - term (2,2) in the 3 X 3 matrix [2,0,0; 0,1,1; 0,1,0]^n. - Alois P. Heinz, Jul 28 2008
a(n) = 2^n - A000045(n+1). - Geoffrey Critzer, Jan 04 2014
a(n) ~ 2^n. - Daniel Forgues, May 06 2015
From Bob Selcoe, Mar 29 2016: (Start)
a(n) = 2*a(n-1) + A000045(n-2).
a(n) = 4*a(n-2) + A000032(n-2). (End)
a(n) = 2^(n-1) - ( ((1+sqrt(5))/2)^n - ((1-sqrt(5))/2)^n)/sqrt(5). - Haider Ali Abdel-Abbas, Aug 17 2019
MAPLE
A027934:= proc(n) local K; K:= Matrix ([[2, 0, 0], [0, 1, 1], [0, 1, 0]])^n; K[1, 1]-K[2, 2] end: seq (A027934(n), n=0..31); # Alois P. Heinz, Jul 28 2008
a := n -> 2^n - combinat:-fibonacci(n+1): seq(a(n), n=0..31); # Peter Luschny, May 09 2015
MATHEMATICA
nn=31; a:=1/(1-x-x^2); b:=1/(1-2x); CoefficientList[Series[a*x*(1+x*b), {x, 0, nn}], x] (* Geoffrey Critzer, Jan 04 2014 *)
LinearRecurrence[{3, -1, -2}, {0, 1, 2}, 32] (* Jean-François Alcover, Jan 09 2016 *)
PROG
(Haskell)
a027934 n = a027934_list !! n
a027934_list = 0 : 1 : 2 : zipWith3 (\x y z -> 3 * x - y - 2 * z)
(drop 2 a027934_list) (tail a027934_list) a027934_list
-- Reinhard Zumkeller, Oct 07 2012
(PARI) a(n)=2^n-fibonacci(n+1) \\ Charles R Greathouse IV, Jun 11 2015
(Magma) [2^n - Fibonacci(n+1): n in [0..35]]; // G. C. Greubel, Sep 27 2019
(Sage) [2^n - fibonacci(n+1) for n in (0..35)] # G. C. Greubel, Sep 27 2019
(GAP) List([0..35], n-> 2^n - Fibonacci(n+1) ); # G. C. Greubel, Sep 27 2019
CROSSREFS
Row sums of triangle A131767. - Gary W. Adamson, Jul 13 2007
a(n) = A101220(1, 2, n+1).
T(n, n) + T(n, n+1) + ... + T(n, 2n), T given by A027926.
Diagonal sums of A055248.
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Simpler definition from Miklos Kristof, Nov 24 2003
Initial zero added by N. J. A. Sloane, Feb 13 2008
Definition fixed by Reinhard Zumkeller, Oct 07 2012
STATUS
approved