[go: up one dir, main page]

login
A027919
a(n) = least k such that 2nd elementary symmetric function of {1,2,...,k+1} >= 3rd elementary symmetric function of {1,2,...,n}.
1
2, 4, 6, 8, 11, 13, 16, 19, 22, 25, 29, 32, 36, 39, 43, 47, 51, 56, 60, 64, 69, 74, 78, 83, 88, 93, 98, 103, 109, 114, 119, 125, 131, 136, 142, 148, 154, 160, 166, 172, 178, 185, 191, 198, 204, 211, 217, 224, 231, 238, 245, 252, 259, 266
OFFSET
3,1
FORMULA
a(n) = min{k: A000914(k) >= A001303(n-2)}. - Sean A. Irvine, Dec 10 2019
MAPLE
SymmPolyn := proc(L::list, n::integer)
local c, a, sel;
a :=0 ;
sel := combinat[choose](nops(L), n) ;
for c in sel do
a := a+mul(L[e], e=c) ;
end do:
a;
end proc:
A027919 := proc(n)
local k, i;
[seq(i, i=1..n)] ;
e3 := SymmPolyn(%, 3) ;
for k from 1 do
[seq(i, i=1..k+1)] ;
if SymmPolyn(%, 2) >= e3 then
return k;
end if;
end do:
end proc: # R. J. Mathar, Sep 23 2016
CROSSREFS
Sequence in context: A022819 A081527 A070978 * A174058 A186382 A331417
KEYWORD
nonn
EXTENSIONS
Definition modified by R. J. Mathar, Sep 23 2016
STATUS
approved