[go: up one dir, main page]

login
A027856
Dan numbers: numbers m of the form 2^j * 3^k such that m +- 1 are twin primes.
12
4, 6, 12, 18, 72, 108, 192, 432, 1152, 2592, 139968, 472392, 786432, 995328, 57395628, 63700992, 169869312, 4076863488, 10871635968, 2348273369088, 56358560858112, 79164837199872, 84537841287168, 150289495621632, 578415690713088, 1141260857376768
OFFSET
1,1
COMMENTS
Special twin prime averages (A014574).
Intersection of A014574 and A003586. - Jeppe Stig Nielsen, Sep 05 2017
LINKS
Ray Chandler, Table of n, a(n) for n = 1..62 (terms < 10^1000, first 55 terms from Donovan Johnson)
FORMULA
a(n) = A078883(n) + 1 = A078884(n) - 1. - Amiram Eldar, Aug 27 2024
EXAMPLE
a(14) = 243*4096 = 995328 and {995327, 995329} are twin primes.
MATHEMATICA
Select[#, Total@ Boole@ Map[PrimeQ, # + {-1, 1}] == 2 &] &@ Select[Range[10^7], PowerMod[6, #, #] == 0 &] (* Michael De Vlieger, Dec 31 2016 *)
seq[max_] := Select[Sort[Flatten[Table[2^i*3^j, {i, 1, Floor[Log2[max]]}, {j, 0, Floor[Log[3, max/2^i]]}]]], And @@ PrimeQ[# + {-1, 1}] &]; seq[2*10^15] (* Amiram Eldar, Aug 27 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Richard C. Schroeppel
EXTENSIONS
Offset corrected by Donovan Johnson, Dec 02 2011
Entry revised by N. J. A. Sloane, Jan 01 2017
STATUS
approved