[go: up one dir, main page]

login
A025891
Expansion of 1/((1-x^5)*(1-x^9)*(1-x^10)).
3
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 1, 2, 3, 0, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 6, 2, 3, 4, 5, 7, 2, 3, 4, 6, 8, 3, 4, 5, 7, 9, 3, 4, 6, 8, 10, 4, 5, 7, 9, 11, 4, 6, 8, 10, 12, 5, 7, 9
OFFSET
0,11
COMMENTS
a(n) is the number of partitions of n into parts 5, 9, and 10. - Michel Marcus, Dec 12 2022
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,0,0,0,1,1,0,0,0,-1,-1,0,0,0,-1,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^5)(1-x^9)(1-x^10)), {x, 0, 80}], x] (* Harvey P. Dale, Mar 05 2019 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 90); Coefficients(R!( 1/((1-x^5)*(1-x^9)*(1-x^10)) )); // G. C. Greubel, Dec 11 2022
(SageMath)
def A025891_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^5)*(1-x^9)*(1-x^10)) ).list()
A025891_list(90) # G. C. Greubel, Dec 11 2022
CROSSREFS
Sequence in context: A079126 A339086 A186336 * A341000 A120630 A248509
KEYWORD
nonn
STATUS
approved