[go: up one dir, main page]

login
A025840
Expansion of 1/((1-x^3)*(1-x^5)*(1-x^12)).
1
1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 3, 1, 3, 3, 2, 3, 4, 3, 3, 5, 3, 4, 6, 3, 5, 6, 4, 6, 7, 5, 6, 8, 6, 7, 9, 6, 8, 10, 7, 9, 11, 8, 10, 12, 9, 11, 13, 10, 12, 14, 11, 13, 16, 12, 14, 17, 13, 16, 18, 14, 17, 19, 16
OFFSET
0,13
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,1,0,0,-1,0,0,0,1,0,0,-1,0,-1,0,0,1).
MAPLE
seq(coeff(series(1/((1-x^3)*(1-x^5)*(1-x^12)), x, n+1), x, n), n = 0..100); # G. C. Greubel, Oct 13 2019
MATHEMATICA
CoefficientList[Series[1/((1 - x^3) (1 - x^5) (1 - x^12)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Apr 25 2017 *)
PROG
(PARI) my(x='x+O('x^100)); Vec(1/((1-x^3)*(1-x^5)*(1-x^12))) \\ G. C. Greubel, Oct 13 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^3)*(1-x^5)*(1-x^12)) )); // G. C. Greubel, Oct 13 2019
(Sage)
def A025840_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x^3)*(1-x^5)*(1-x^12))).list()
A025840_list(100) # G. C. Greubel, Oct 13 2019
(GAP) a:=[1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 3, 1];; for n in [21..100] do a[n]:=a[n-3]+a[n-5]-a[n-8]+a[n-12]-a[n-15]-a[n-17]+a[n-20]; od; a; # G. C. Greubel, Oct 13 2019
CROSSREFS
Sequence in context: A353595 A317086 A131376 * A188542 A029284 A123275
KEYWORD
nonn
STATUS
approved