[go: up one dir, main page]

login
A025444
Number of partitions of n into 5 distinct nonzero squares.
8
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0
OFFSET
0,104
FORMULA
a(n) = [x^n y^5] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019
EXAMPLE
a(111) = 2 via 1 + 4 + 9 + 16 + 81 = 1 + 9 + 16 + 36 + 49. - David A. Corneth, Feb 02 2021
MAPLE
From R. J. Mathar, Oct 18 2010: (Start)
A025444aux := proc(n, m, nmax) local a, m, upn, lv ; if m = 1 then if issqr(n) and nmax^2 >= n and n >= 1 then return 1; else return 0; end if; else a := 0 ; for upn from 1 to nmax do lv := n-upn^2 ; if lv <0 then break; end if; a := a + procname(lv, m-1, upn-1) ; end do: return a; end if; end proc:
A025444 := proc(n) A025444aux(n, 5, n) ; end proc: (End)
KEYWORD
nonn,look
STATUS
approved