[go: up one dir, main page]

login
A023533
a(n) = 1 if n is of the form m(m+1)(m+2)/6, and 0 otherwise.
63
1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
a(n) is the characteristic function of tetrahedral numbers (A000292). - Mikael Aaltonen, Mar 28 2015
FORMULA
a(A000292(n))=1; a(A145397(n))=0; a(n)=1-A014306(n). - Reinhard Zumkeller, Oct 14 2008
For n > 0, a(n) = floor(t(n+1) + 1/(3 * t(n+1)) - 1) - floor(t(n) + 1/(3 * t(n)) - 1), where t(n) = ( sqrt(243*n^2-1)/3^(3/2) + 3*n )^(1/3). - Mikael Aaltonen, Mar 28 2015; corrected by Michel Marcus, Jul 17 2022
MATHEMATICA
With[{ms=Table[m(m+1)(m+2)/6, {m, 0, 20}]}, Table[If[MemberQ[ms, n], 1, 0], {n, 0, 100}]] (* Harvey P. Dale, Jul 25 2011 *)
a[n_]:=Boole[Binomial[Floor[(6n-1)^(1/3)]+2, 3] == n]; Array[a, 99, 0] (* Stefano Spezia, Sep 15 2024 after Michel Marcus, Jul 19 2022 *)
PROG
(Sage) # Generates an array with at least N terms.
def A023533_list(N):
A = []
for m in range(ceil((6*N)^(1/3))):
A.extend([0]*(binomial(m+2, 3) - len(A)) + [1])
return A
print(A023533_list(40))
# Danny Rorabaugh, Mar 16 2015
(PARI) lista(nn) = {v = vector(nn); for (n=0, nn, i = 1+n*(n+1)*(n+2)/6; if (i > nn, break); v[i] = 1; ); v; } \\ Michel Marcus, Mar 16 2015
(PARI) a(n) = if(n==0, return(1)); my(t = sqrtnint(6*n-1, 3)); binomial(t+2, 3) == n; \\ Michel Marcus, Jul 19 2022; after A014306
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 14 1998
STATUS
approved