[go: up one dir, main page]

login
A023273
Primes that remain prime through 3 iterations of function f(x) = 2x + 3.
2
2, 5, 47, 67, 97, 137, 197, 277, 307, 607, 617, 1307, 1427, 2857, 5717, 6047, 6217, 6257, 6997, 9377, 9787, 9967, 11197, 12097, 13297, 13997, 14347, 16057, 18757, 18947, 20887, 21517, 21587, 21757, 24197, 26227, 28097, 28447, 32117, 33767, 34367, 35117
OFFSET
1,1
COMMENTS
Primes p such that 2*p+3, 4*p+9 and 8*p+21 are also primes. - Vincenzo Librandi, Aug 04 2010
LINKS
MATHEMATICA
Select[Prime[Range[5000]], AllTrue[Rest[NestList[2#+3&, #, 3]], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 01 2016 *)
PROG
(Magma) [p: p in PrimesUpTo(50000) | IsPrime(2*p+3) and IsPrime(4*p+9) and IsPrime(8*p+21)]; // Vincenzo Librandi, Aug 04 2010
(Python)
from sympy import prime, isprime
A023273_list = [p for p in (prime(n) for n in range(1, 10**2)) if isprime(2*p+3) and isprime(4*p+9) and isprime(8*p+21)] # Chai Wah Wu, Sep 09 2014
(PARI) isok(n)=isprime(n) && isprime(2*n+3) && isprime(4*n+9) && isprime(8*n+21) \\ Edward Jiang, Sep 09 2014
CROSSREFS
Sequence in context: A225147 A119715 A326965 * A041729 A078665 A163666
KEYWORD
nonn
STATUS
approved