[go: up one dir, main page]

login
A022840
Beatty sequence for sqrt(6).
21
2, 4, 7, 9, 12, 14, 17, 19, 22, 24, 26, 29, 31, 34, 36, 39, 41, 44, 46, 48, 51, 53, 56, 58, 61, 63, 66, 68, 71, 73, 75, 78, 80, 83, 85, 88, 90, 93, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 124, 127, 129, 132, 134, 137, 139, 142, 144, 146
OFFSET
1,1
COMMENTS
Complement of A138235; a(n) = A138236(A138235(n)) and A138236(a(n)) = A138235(n). - Reinhard Zumkeller, Mar 07 2008
Numbers k such that A248515(k+1) = A248515(k) + 1 = 1 + least number h such that 1 - h*sin(1/h) < 1/n^2. The difference sequence of A248515 is (0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, ...), so that A138235 = (1, 3, 5, 6, 8, ...) and A022840 = (2, 4, 7, 9, 12, 14, ...). - Clark Kimberling, Jun 16 2015
LINKS
Iain Fox, Table of n, a(n) for n = 1..10000 (first 1000 terms from Reinhard Zumkeller)
Clark Kimberling, Beatty sequences and trigonometric functions, Integers 16 (2016), #A15.
Eric Weisstein's World of Mathematics, Beatty Sequence
MATHEMATICA
Table[Floor[n Sqrt[6]], {n, 70}] (* Vincenzo Librandi, Jun 17 2015 *)
PROG
(Haskell)
a022840 = floor . (* sqrt 6) . fromIntegral
-- Reinhard Zumkeller, Sep 14 2014
(Magma) [Floor(n*Sqrt(6)): n in [1..60]]; // Vincenzo Librandi, Jun 17 2015
(PARI) a(n) = floor(n*sqrt(6)) \\ Iain Fox, Nov 20 2017
CROSSREFS
Cf. A010464 (sqrt(6)), A138235 (complement), A248515.
Sequence in context: A329834 A059542 A190324 * A329994 A064995 A329846
KEYWORD
nonn
STATUS
approved