OFFSET
0,5
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
G. C. Greubel, Rows n=0..50 of triangle, flattened
R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv:1409.3820 [math.NT], 2014.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
EXAMPLE
1 ;
1 1;
1 8 1;
1 57 57 1;
1 400 2850 400 1;
1 2801 140050 140050 2801 1;
1 19608 6865251 48177200 6865251 19608 1;
1 137257 336416907 16531644851 16531644851 336416907 137257 1;
MAPLE
MATHEMATICA
p[n_]:=Product[7^i - 1, {i, 1, n}]; t[n_, k_]:=p[n]/(p[k]*p[n - k]); Table[t[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* Vincenzo Librandi, Aug 13 2016 *)
Table[QBinomial[n, k, 7], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 7; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 27 2018 *)
PROG
(PARI) {q=7; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 27 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved