[go: up one dir, main page]

login
A017483
a(n) = (11*n + 7)^11.
12
1977326743, 64268410079232, 12200509765705829, 419430400000000000, 6071163615208263051, 52036560683837093888, 313726685568359708377, 1469170321634239709184, 5688000922764599609375, 18982985583354248390656, 56239892154164025151533, 151115727451828646838272
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (1977326743 +64244682158316*x +11429419348320083*x^2 + 277265562864875904*x^3 +1829094388304154510*x^4 +4212702849829094280*x^5 +3698421546351487230*x^6 +1221731311784947392*x^7 +134444370899578971* x^8 +3566547693499340*x^9 +8649705527727*x^10 +4194304*x^11)/(1-x)^12.
E.g.f.: (1977326743 +64266432752489*x +6035987461437054*x^2 + 63836945659298911*x^3 +186099500089146160*x^4 +214611357085098248*x^5 + 117178874627032680*x^6 +33290649534885897*x^7 +5128288643417445*x^8 + 425762824825415*x^9 +17689323577882*x^10 +285311670611*x^11)*exp(x). (end)
MAPLE
seq((11*n+7)^11, n=0..20); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11*Range[21] -4)^11 (* G. C. Greubel, Sep 19 2019 *)
PROG
(Magma) [(11*n+7)^11: n in [0..20]]; // Vincenzo Librandi, Sep 04 2011
(PARI) vector(20, n, (11*n-4)^11) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+7)^11 for n in (0..20)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..20], n-> (11*n+7)^11); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), this sequence (m=11), A017484 (m=12).
Sequence in context: A017159 A017255 A017363 * A017615 A232129 A251506
KEYWORD
nonn,easy
STATUS
approved