[go: up one dir, main page]

login
A017474
a(n) = (11*n + 7)^2.
12
49, 324, 841, 1600, 2601, 3844, 5329, 7056, 9025, 11236, 13689, 16384, 19321, 22500, 25921, 29584, 33489, 37636, 42025, 46656, 51529, 56644, 62001, 67600, 73441, 79524, 85849, 92416, 99225, 106276, 113569, 121104, 128881, 136900, 145161, 153664, 162409, 171396, 180625, 190096, 199809
OFFSET
0,1
FORMULA
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (49 +177*x +16*x^2)/(1-x)^3.
E.g.f.: (49 +275*x +121*x^2)*exp(x). (End)
MAPLE
seq((11*n+7)^2, n=0..50); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11 Range[0, 50]+7)^2 (* or *) LinearRecurrence[{3, -3, 1}, {49, 324, 841}, 50] (* Harvey P. Dale, May 19 2019 *)
PROG
(Magma) [(11*n+7)^2: n in [0..50]]; // Vincenzo Librandi, Sep 04 2011
(PARI) a(n)=(11*n+7)^2 \\ Charles R Greathouse IV, Jun 17 2017
(Sage) [(11*n+7)^2 for n in (0..50)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..50], n-> (11*n+7)^2); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+7)^m: A017473 (m=1), this sequence (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).
Sequence in context: A250967 A245033 A340124 * A335389 A036318 A365206
KEYWORD
nonn,easy
STATUS
approved