[go: up one dir, main page]

login
A014494
Even triangular numbers.
15
0, 6, 10, 28, 36, 66, 78, 120, 136, 190, 210, 276, 300, 378, 406, 496, 528, 630, 666, 780, 820, 946, 990, 1128, 1176, 1326, 1378, 1540, 1596, 1770, 1830, 2016, 2080, 2278, 2346, 2556, 2628, 2850, 2926, 3160, 3240, 3486, 3570, 3828, 3916, 4186, 4278, 4560
OFFSET
0,2
COMMENTS
Even numbers of the form n*(n+1)/2.
Even generalized hexagonal numbers. - Omar E. Pol, Apr 24 2016
FORMULA
a(n) = (2*n+1)*(2*n+1-(-1)^n)/2. - Ant King, Nov 18 2010
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). - Ant King, Nov 18 2010
G.f.: -2*x*(3*x^2+2*x+3)/((x+1)^2*(x-1)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = A000217(A014601(n)). - Reinhard Zumkeller, Oct 04 2004
a(n) = A014493(n+1)-(2n+1)*(-1)^n. - R. J. Mathar, Sep 15 2009
a(n) = A193867(n+1) - 1. - Omar E. Pol, Aug 17 2011
Sum_{n>=1} 1/a(n) = 2 - Pi/2. - Robert Bilinski, Jan 20 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2)-2. - Amiram Eldar, Mar 06 2022
MATHEMATICA
Table[2Ceiling[n/2]*(2n + 1), {n, 0, 47}] (* Robert G. Wilson v, Nov 05 2004 *)
1/2 (2#+1)(2#+1-(-1)^#) &/@Range[0, 47] (* Ant King, Nov 18 2010 *)
Select[1/2 #(#+1) &/@Range[0, 95], EvenQ] (* Ant King, Nov 18 2010 *)
PROG
(Magma) [1/2*(2*n+1)*(2*n+1-(-1)^n): n in [0..50]]; // Vincenzo Librandi, Aug 18 2011
(PARI) a(n)=(2*n+1)*(2*n+1-(-1)^n)/2 \\ Charles R Greathouse IV, Oct 07 2015
(Python)
def A014494(n): return (2*n+1)*(n+n%2) # Chai Wah Wu, Mar 11 2022
CROSSREFS
Cf. similar sequences listed in A299645.
Sequence in context: A184387 A295185 A225845 * A318894 A129545 A097578
KEYWORD
nonn,easy
EXTENSIONS
More terms from Erich Friedman
STATUS
approved