OFFSET
0,12
COMMENTS
Since the nontrivial 8-regular graph with the least number of vertices is K_9, there are no disconnected 8-regular graphs with less than 18 vertices. Thus for n<18 this sequence is identical to A180260. - Jason Kimberley, Sep 25 2009 and Feb 10 2011
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 648.
I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
LINKS
Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
M. Meringer, Tables of Regular Graphs
Eric Weisstein's World of Mathematics, Connected Graph
Eric Weisstein's World of Mathematics, Octic Graph
Eric Weisstein's World of Mathematics, Regular Graph
FORMULA
EXAMPLE
a(0)=1 because the null graph (with no vertices) is vacuously 8-regular and connected.
CROSSREFS
Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
8-regular simple graphs: this sequence (connected), A165878 (disconnected), A180260 (not necessarily connected).
Connected regular simple graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), this sequence (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 8-regular simple graphs with girth at least g: A184981 (triangle); chosen g: A014378 (g=3), A181154 (g=4).
KEYWORD
nonn,hard
AUTHOR
EXTENSIONS
Using the symmetry of A051031, a(15) and a(16) were appended by Jason Kimberley, Sep 25 2009
a(17)-a(22) from Andrew Howroyd, Mar 13 2020
STATUS
approved