OFFSET
1,1
COMMENTS
An approximation to Pi.
A case of "high precision fraud": curiously, among the first 40 digits, only 4 are wrong (in positions 7, 18, 19 and 30). - Jean-François Alcover, Apr 23 2013
This result arises because the sum is Pi - 2*10^-6 + 2*10^-18 - 10^-29 + 122*10^-42 - ... - Jon E. Schoenfield, Mar 11 2018
LINKS
J. M. Borwein and P. B. Borwein, Strange series and high precision fraud, Amer. Math. Monthly 99, 7 (Aug. 1992), 622-640.
J. M. Borwein, P. B. Borwein and K. Dilcher, Pi, Euler numbers and asymptotic expansions, Amer. Math. Monthly, 96 (1989), 681-687.
J. M. Borwein and R. M. Corless, Review of "An Encyclopedia of Integer Sequences" by N. J. A. Sloane and Simon Plouffe, SIAM Review, 38 (1996), 333-337.
EXAMPLE
3.1415906535897932404626433832695028841972913993751030509749446933498...
PROG
(PARI) 4*sum(k=1, 500000, (-1.)^(k-1)/(2*k-1)) \\ Michel Marcus, Mar 11 2018
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
EXTENSIONS
a(78)-a(80) corrected and more digits from Jon E. Schoenfield, Mar 11 2018
STATUS
approved