OFFSET
0,2
COMMENTS
Partial sums are given by A130484(n)+n+1. - Hieronymus Fischer, Jun 08 2007
41152/333333 = 0.123456123456123456... [Eric Desbiaux, Nov 03 2008]
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
FORMULA
a(n) = 1 + (n mod 6). - Paolo P. Lava, Nov 21 2006
a(n) = A010875(n)+1. G.f.: g(x)=(Sum_{0<=k<6} (k+1)*x^k)/(1-x^6). Also g(x)=(6*x^7-7*x^6+1)/((1-x^6)*(1-x)^2). - Hieronymus Fischer, Jun 08 2007
From Wesley Ivan Hurt, Jun 17 2016: (Start)
G.f.: (1+2*x+3*x^2+4*x^3+5*x^4+6*x^5)/(1-x^6).
a(n) = (21-3*cos(n*Pi)-4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/6.
a(n) = a(n-6) for n>5. (End)
MAPLE
A010885:=n->(21-3*cos(n*Pi)-4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/6: seq(A010885(n), n=0..100); # Wesley Ivan Hurt, Jun 17 2016
MATHEMATICA
Flatten[Table[Range[6], {n, 15}]] (* Harvey P. Dale, Aug 01 2011 *)
PadRight[{}, 90, Range[6]] (* Harvey P. Dale, Sep 23 2019 *)
PROG
(Magma) &cat[[1..6]: n in [0..20]]; // Wesley Ivan Hurt, Jun 17 2016
CROSSREFS
Cf. A177158 (decimal expansion of (103+2*sqrt(4171))/162). [From Klaus Brockhaus, May 03 2010]
KEYWORD
nonn,easy
AUTHOR
STATUS
approved