OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,1).
FORMULA
From Hieronymus Fischer, Sep 30 2007: (Start)
a(n) = (1/11)*(1-r^n)*sum{1<=k<11, k*product{1<=m<11,m<>k, (1-r^(n-m))}} where r=exp(2*Pi/11*i) and i=sqrt(-1).
a(n) = (1024/11)^2*(sin(n*Pi/11))^2*sum{1<=k<11, k*product{1<=m<11,m<>k, (sin((n-m)*Pi/11))^2}}.
G.f.: (sum{1<=k<11, k*x^k})/(1-x^11).
G.f.: x*(10*x^11-11*x^10+1)/((1-x^11)*(1-x)^2). (End)
MATHEMATICA
PadRight[{}, 80, Range[0, 10]] (* Harvey P. Dale, Nov 13 2012 *)
PROG
(Sage) [power_mod(n, 11, 11) for n in range(0, 78)] # Zerinvary Lajos, Nov 07 2009
(PARI) a(n)=n%11 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Correction. Typo at the sum formula for the g.f.: the summation index should not read "1<=k<10" but "1<=k<11" (see corrected formula).
STATUS
approved