[go: up one dir, main page]

login
A008398
Crystal ball sequence for E_7 lattice.
1
1, 127, 3025, 28911, 162417, 652431, 2086241, 5659295, 13561889, 29504095, 59400241, 112234255, 201127185, 344628207, 568250433, 906272831, 1403829569, 2119308095, 3127077265, 4520566831, 6415719601, 8954837583, 12310843425, 16691978463, 22346958689, 29570609951
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
FORMULA
a(n) = 1 + (2/105)*n*(222*n^6 + 756*n^5 + 1260*n^4 + 1470*n^3 + 1708*n^2 + 1029*n + 170).
G.f.: (1+119*x+2037*x^2+8211*x^3+8787*x^4+2037*x^5+119*x^6+x^7)/(1-x)^8. - Colin Barker, Mar 16 2012
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Harvey P. Dale, Jul 18 2012
MAPLE
seq(148/35*n^7+72/5*n^6+24*n^5+28*n^4+488/15*n^3+98/5*n^2+68/21*n+1, n=0..30);
MATHEMATICA
Table[148/35n^7+72/5n^6+24n^5+28n^4+488/15n^3+98/5n^2+68/21n+1, {n, 0, 20}] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {1, 127, 3025, 28911, 162417, 652431, 2086241, 5659295}, 20] (* Harvey P. Dale, Jul 18 2012 *)
PROG
(PARI) a(n)=(444*n^7 + 1512*n^6 + 2520*n^5 + 2940*n^4 + 3416*n^3 + 2058*n^2 + 340*n + 105)/105 \\ Charles R Greathouse IV, Feb 10 2017
(Magma) [1 +(2/105)*n*(222*n^6 +756*n^5 +1260*n^4 +1470*n^3 +1708*n^2 +1029*n +170): n in [0..30]]; // G. C. Greubel, May 29 2023
(SageMath)
def A008398(n): return 1 +2*n*(222*n^6 +756*n^5 +1260*n^4 +1470*n^3 +1708*n^2 +1029*n +170)//105
[A008398(n) for n in range(31)] # G. C. Greubel, May 29 2023
CROSSREFS
Sequence in context: A321552 A321546 A345458 * A144969 A114535 A215611
KEYWORD
nonn,easy,nice
STATUS
approved