[go: up one dir, main page]

login
A007099
Number of labeled trivalent (or cubic) 2-connected graphs with 2n nodes.
(Formerly M5344)
2
0, 1, 70, 19320, 11052720, 11408720400, 19285018552800, 49792044478176000, 186348919238786304000, 970566620767088881536000, 6808941648018137282054400000, 62642603299257346706851910400000
OFFSET
1,3
REFERENCES
R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
R. W. Robinson, Computer print-out, no date. Gives first 29 terms.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. W. Robinson, Table of n, a(n) for n = 1..29 (corrected by Michel Marcus, Jan 19 2019)
G.-B. Chae, E. M. Palmer, R. W. Robinson, Counting labeled general cubic graphs, Discr. Math. 307 (2007) 2979-2992, eqs. (23) and (24).
FORMULA
a(n) = (2*n)! * (s(n) - 2*s(n-1)) / (3*n*2^n) where s(1)=0, s(2)=1, and s(n) = 3*n*s(n-1) + 2*s(n-2) + (3*n-1) * Sum_{i=2..n-3} s(i) * s(n-1-i). - Sean A. Irvine, Oct 11 2017
MAPLE
s := proc(n)
option remember;
if n = 1 then
0;
elif n = 2 then
1;
else
3*n*procname(n-1)+2*procname(n-2)+(3*n-1)*add(procname(i)*procname(n-1-i), i=2..n-3) ;
end if;
end proc:
A007099 := proc(n)
if n = 1 then
0;
elif n = 2 then
1;
else
(2*n)!/3/n/2^n*(s(n)-2*s(n-1)) ;
end if;
end proc: # R. J. Mathar, Nov 08 2018
MATHEMATICA
s[n_] := s[n] = If[n <= 2, n - 1, 3 n s[n - 1] + 2 s[n - 2] + (3 n - 1) Sum[s[i] s[n - 1 - i], {i, 2, n - 3}]]; Array[Floor[(2 #)!*(s[#] - 2 s[# - 1])/(3 # 2^#)] &, 12] (* Michael De Vlieger, Oct 11 2017 *)
CROSSREFS
Sequence in context: A007100 A103157 A364305 * A004109 A002829 A177637
KEYWORD
nonn
STATUS
approved