[go: up one dir, main page]

login
A006416
Number of loopless rooted planar maps with 3 faces and n vertices and no isthmuses. Also a(n)=T(4,n-3), array T as in A049600.
(Formerly M4490)
4
1, 8, 20, 38, 63, 96, 138, 190, 253, 328, 416, 518, 635, 768, 918, 1086, 1273, 1480, 1708, 1958, 2231, 2528, 2850, 3198, 3573, 3976, 4408, 4870, 5363, 5888, 6446, 7038, 7665, 8328, 9028, 9766, 10543, 11360, 12218, 13118, 14061, 15048
OFFSET
2,2
COMMENTS
If Y_i (i=1,2,3) are 2-blocks of an n-set X then, for n>=6, a(n-3) is the number of (n-3)-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Nov 09 2007
a(n) is also the number of triangle subgraphs in a complete graph on n+3 vertices, minus 3 non-incident edges, for n > 2. - Robert H Cowen, Jun 23 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
T. R. S. Walsh, A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
FORMULA
G.f.: x^2*(1+4*x-6*x^2+2*x^3)/(1-x)^4.
a(n-3) = (1/6)*n^3-(1/2)*n^2-(8/3)*n+6, n=6,7,... - Milan Janjic, Nov 09 2007
a(2)=1, a(3)=8, a(4)=20, a(5)=38, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Aug 25 2013
a(n+2) = Hyper2F1([-3, n], [1], -1). - Peter Luschny, Aug 02 2014
a(n) = binomial(n+3, 3) - 3*(n+1). - Robert H Cowen, Jun 23 2018
MAPLE
A006416:=(1+4*z-6*z**2+2*z**3)/(z-1)**4; # Conjectured by Simon Plouffe in his 1992 dissertation.
a := n -> hypergeom([-3, n-2], [1], -1);
seq(round(evalf(a(n), 32)), n=2..41); # Peter Luschny, Aug 02 2014
MATHEMATICA
f[n_]:=Sum[i+i^2-6, {i, 1, n}]/2; Table[f[n], {n, 3, 5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2010 *)
CoefficientList[Series[(1+4x-6x^2+2x^3)/(1-x)^4, {x, 0, 50}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 8, 20, 38}, 50] (* Harvey P. Dale, Aug 25 2013 *)
f[n_]:= Binomial[n, 3] - 3(n-2); Table[{n, f[n]}, {n, 5, 100}]//TableForm (* Robert H Cowen, Jun 23 2018 *)
PROG
(PARI) Vec((1+4*x-6*x^2+2*x^3)/(1-x)^4 + O(x^40)) \\ Andrew Howroyd, Jul 15 2018
CROSSREFS
Column k=3 of A342980.
Cf. A049600.
Sequence in context: A073607 A351967 A086062 * A375717 A273069 A273144
KEYWORD
nonn,easy,nice
EXTENSIONS
Name clarified by Andrew Howroyd, Apr 01 2021
STATUS
approved