[go: up one dir, main page]

login
A004432
Numbers that are the sum of 3 distinct nonzero squares.
31
14, 21, 26, 29, 30, 35, 38, 41, 42, 45, 46, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 69, 70, 74, 75, 77, 78, 81, 83, 84, 86, 89, 90, 91, 93, 94, 98, 101, 104, 105, 106, 107, 109, 110, 113, 114, 115, 116, 117, 118, 120, 121, 122, 125, 126, 129, 131, 133
OFFSET
1,1
COMMENTS
Numbers that can be written as a(n) = x^2 + y^2 + z^2 with 0 < x < y < z.
This is a subsequence (equal to the range) of A024803. As a set, it is the union of A025339 and A024804, subsequences of numbers having exactly one, resp. more than one, such representations. - M. F. Hasler, Jan 25 2013
Conjecture: a number n is a sum of 3 squares, but not a sum of 3 distinct nonzero squares (i.e., is in A004432 but not A000408), if and only if it is of the form 4^j*s, where j >= 0 and s in {1, 2, 3, 5, 6, 9, 10, 11, 13, 17, 18, 19, 22, 25, 27, 33, 34, 37, 43, 51, 57, 58, 67, 73, 82, 85, 97, 99, 102, 123, 130, 163, 177, 187, 193, 267, 627, 697}. - Jeffrey Shallit, Jan 15 2017
4*a(n) gives the sums of 3 distinct nonzero even squares. - Wesley Ivan Hurt, Apr 05 2021
FORMULA
A004432 = { x^2 + y^2 + z^2; 0 < x < y < z }.
n is in A004432 <=> A025442(n) > 0. - M. F. Hasler, Feb 03 2013
EXAMPLE
14 = 1^2 + 2^2 + 3^2;
62 = 1^2 + 5^2 + 6^2.
MATHEMATICA
f[upto_]:=Module[{max=Floor[Sqrt[upto]]}, Select[Union[Total/@ (Subsets[ Range[ max], {3}]^2)], #<=upto&]]; f[150] (* Harvey P. Dale, Mar 24 2011 *)
PROG
(PARI) is_A004432(n)=for(x=1, sqrtint(n\3), for(y=x+1, sqrtint((n-1-x^2)\2), issquare(n-x^2-y^2)&return(1))) \\ M. F. Hasler, Feb 02 2013
(Haskell)
a004432 n = a004432_list !! (n-1)
a004432_list = filter (p 3 $ tail a000290_list) [1..] where
p k (q:qs) m = k == 0 && m == 0 ||
q <= m && k >= 0 && (p (k - 1) qs (m - q) || p k qs m)
-- Reinhard Zumkeller, Apr 22 2013
KEYWORD
nonn,easy,nice
STATUS
approved