OFFSET
0,4
COMMENTS
The smallest Fibonacci number with 1, 2, 3,... trailing zeros is F(15), F(150), F(750), F(7500), F(75000),.... This provides an idea of how many digits may be "lost" by reversal. - R. J. Mathar, Mar 11 2013
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
MATHEMATICA
Sort[FromDigits[Reverse[IntegerDigits[#]]]&/@Fibonacci[Range[0, 40]]] (* Harvey P. Dale, Jun 17 2011 *)
IntegerReverse[Fibonacci[Range[0, 40]]]//Sort (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 02 2019 *)
PROG
(Haskell)
import Data.Set (fromList, deleteFindMin, insert)
a004170 n = a004170_list !! n
a004170_list = 0 : 1 : f (fromList us) vs where
f s (x:xs) = m : f (insert x s') xs
where (m, s') = deleteFindMin s
(us, vs) = splitAt 120 $ drop 2 a004091_list
-- Reinhard Zumkeller, Mar 09 2013
CROSSREFS
KEYWORD
nonn,base,easy,nice
AUTHOR
STATUS
approved