OFFSET
1,1
COMMENTS
Numbers m for which phi(a(m)) is not a power of 2, phi = A000010, Euler's totient function. - Reinhard Zumkeller, Jul 31 2012
Numbers m for which A295660(m) > 1. - Lorenzo Sauras Altuzarra, Nov 04 2018
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 183.
B. L. van der Waerden, Modern Algebra. Unger, NY, 2nd ed., Vols. 1-2, 1953, Vol. 1, p. 187.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
Claudi Alsina and Roger B. Nelson, A Panoply of Polygons, Dolciani Math. Expeditions Vol. 58, AMS/MAA (2023), see page 16.
C. F. Gauss, Disquisitiones Arithmeticae, Lipsiae, 1801. Reprinted in C. F. Gauss, Werke, 1863.
C. F. Gauss, Disquisitiones Arithmeticae, 1801. English translation: Yale University Press, New Haven, CT, 1966, p. 460.
FORMULA
a(n) = n + O(log^2 n). - Charles R Greathouse IV, Oct 23 2015
MATHEMATICA
Select[ Range[75], !IntegerQ[ Log[2, EulerPhi[#] ] ]& ] (* Jean-François Alcover, Nov 24 2011, after A003401 *)
PROG
(Haskell)
a004169 n = a004169_list !! (n-1)
a004169_list = map (+ 1) $ elemIndices 0 $ map a209229 a000010_list
-- Reinhard Zumkeller, Jul 31 2012
(PARI) is(n)=my(t=4294967295); n>>=valuation(n, 2); n/=gcd(n, t); if(gcd(n, t)>1, return(1)); if(n==1, return(0)); if(n<9e2585827972, return(1)); forprime(p=7, 1e5, if(n%p==0, return(1))); warning("Result is conjectural on the nonexistence of Fermat primes >= F(33)."); 1 \\ Charles R Greathouse IV, Oct 23 2015
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane, Branislav Kisacanin (bkisacan(AT)eecs.uic.edu)
STATUS
approved