[go: up one dir, main page]

login
A003334
Numbers that are the sum of 11 positive cubes.
32
11, 18, 25, 32, 37, 39, 44, 46, 51, 53, 58, 60, 63, 65, 67, 70, 72, 74, 77, 79, 81, 84, 86, 88, 89, 91, 93, 95, 96, 98, 100, 102, 103, 105, 107, 109, 110, 112, 114, 115, 116, 117, 119, 121, 122, 123, 124, 126, 128, 129, 130, 131, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144
OFFSET
1,1
COMMENTS
As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020
The sequence contains all integers greater than 321 which is the last of only 92 positive integers not in this sequence. - M. F. Hasler, Aug 25 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
FORMULA
a(n) = n + 92 for all n > 229. - M. F. Hasler, Aug 25 2020
EXAMPLE
From David A. Corneth, Aug 01 2020: (Start)
1120 is in the sequence as 1120 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 8^3.
2339 is in the sequence as 2339 = 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 9^3 + 9^3.
3594 is in the sequence as 3594 = 4^3 + 5^3 + 6^3 + 6^3 + 6^3 + 6^3 + 7^3 + 7^3 + 7^3 + 8^3 + 10^3. (End)
PROG
(PARI) (A003334_upto(N, k=11, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(150) \\ See also A003333 for alternate code. - M. F. Hasler, Aug 03 2020
CROSSREFS
Other sequences S(k, m) of numbers that are the sum of k nonzero m-th powers:
A000404 = S(2, 2), A000408 = S(3, 2), A000414 = S(4, 2) complement of A000534,
A047700 = S(5, 2) complement of A047701, A180968 = complement of S(6,2);
A003325 = S(2, 3), A003072 = S(3, 3), A003327 .. A003335 = S(4 .. 12, 3) and A332107 .. A332111 = complement of S(7 .. 11, 3);
A003336 .. A003346 = S(2 .. 12, 4), A003347 .. A003357 = S(2 .. 12, 5),
A003358 .. A003368 = S(2 .. 12, 6), A003369 .. A003379 = S(2 .. 12, 7),
A003380 .. A003390 = S(2 .. 12, 8), A003391 .. A004801 = S(2 .. 12, 9),
A004802 .. A004812 = S(2 .. 12, 10), A004813 .. A004823 = S(2 .. 12, 11).
Sequence in context: A250217 A335278 A151748 * A037006 A188892 A168433
KEYWORD
nonn,easy
STATUS
approved