[go: up one dir, main page]

login
A003092
Number of labeled plane 2-trees with n nodes.
(Formerly M2159)
3
0, 1, 2, 36, 1200, 57000, 3477600, 257826240, 22438563840, 2238543216000, 251584613280000, 31431367287936000, 4319334744012288000, 647313578549730892800, 105041172967733882880000, 18345770194541665075200000, 3430869798262479024291840000
OFFSET
1,3
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 30, Problem 1.14.
E. M. Palmer and R. C. Read, on the number of plane 2-trees, J. Lond. Math. Soc., 6 (1973), 583-592.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
E. M. Palmer and R. C. Read, On the number of plane 2-trees, J. Lond. Math. Soc., 6 (1973), 583-592. [Annotated and corrected scanned copy]
FORMULA
a(n) = n*(n-1)^2*(5*n-10)!/(4*n-6)!.
MAPLE
[0, seq(n*(n-1)^2*(5*n-10)!/(4*n-6)!, n=2..20) ];
MATHEMATICA
Join[{0}, Table[n*(n-1)^2*(5*n-10)!/(4*n-6)!, {n, 2, 30}]] (* G. C. Greubel, Nov 02 2022 *)
PROG
(Magma) [0] cat [n*(n-1)^2*Factorial(5*n-10)/Factorial(4*n-6): n in [2..30]]; // G. C. Greubel, Nov 02 2022
(SageMath) [0]+[n*(n-1)^2*factorial(5*n-10)/factorial(4*n-6) for n in range(2, 30)] # G. C. Greubel, Nov 02 2022
CROSSREFS
Sequence in context: A210899 A302903 A259467 * A187535 A263421 A046673
KEYWORD
nonn
STATUS
approved