[go: up one dir, main page]

login
A002453
Central factorial numbers.
(Formerly M5249 N2283)
5
1, 35, 966, 24970, 631631, 15857205, 397027996, 9931080740, 248325446061, 6208571999575, 155218222621826, 3880490869237710, 97012589464171291, 2425317596203339145, 60632965641474990456, 1515824372664398367880
OFFSET
0,2
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 36.
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: 1/((1 - x)*(1 - 9*x)*(1 - 25*x)).
a(n) = (5^(2*n + 4) - 3^(2*n + 5) + 2)/384.
E.g.f.: sinh(x)^5/120 = Sum_{n>=0} a(n)*x^(2*n + 5)/(2*n + 5)!. - Vladimir Kruchinin, Sep 30 2012
a(n) = det(|v(i+3,j+2)|, 1 <= i,j <= n), where v(n,k) are central factorial numbers of the first kind with odd indices (A008956). - Mircea Merca, Apr 06 2013
a(n) = 35*a(n-1) -259*a(n-2) +225*a(n-3), with a(0) = 1, a(1) = 35, a(2) = 966. - Harvey P. Dale, Feb 25 2015
a(n) = 25*a(n-1) + A002452(n+1), with a(0) = 1. - Nadia Lafreniere, Aug 08 2022
MAPLE
A002453:=-1/(z-1)/(25*z-1)/(9*z-1); # Simon Plouffe (from his 1992 dissertation).
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-9x)(1-25x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{35, -259, 225}, {1, 35, 966}, 20] (* Harvey P. Dale, Feb 25 2015 *)
PROG
(GAP) List([0..20], n->(5^(2*n+4)-3^(2*n+5)+2)/384); # Muniru A Asiru, Dec 20 2018
(PARI) vector(20, n, n--; (5^(2*n+4)-3^(2*n+5)+2)/384) \\ G. C. Greubel, Jul 04 2019
(Magma) [(5^(2*n+4)-3^(2*n+5)+2)/384: n in [0..20]]; // G. C. Greubel, Jul 04 2019
(Sage) [(5^(2*n+4)-3^(2*n+5)+2)/384 for n in (0..20)] # G. C. Greubel, Jul 04 2019
CROSSREFS
Right-hand column 2 in triangle A008958.
Cf. A002452.
Sequence in context: A080250 A014934 A115473 * A240826 A210313 A049395
KEYWORD
nonn,easy
STATUS
approved