[go: up one dir, main page]

login
A002106
Number of transitive permutation groups of degree n.
(Formerly M1316 N0504)
17
1, 1, 2, 5, 5, 16, 7, 50, 34, 45, 8, 301, 9, 63, 104, 1954, 10, 983, 8, 1117, 164, 59, 7, 25000, 211, 96, 2392, 1854, 8, 5712, 12, 2801324, 162, 115, 407, 121279, 11, 76, 306, 315842, 10, 9491, 10, 2113, 10923, 56, 6
OFFSET
1,3
COMMENTS
It is conjectured that this is the number of Galois groups for irreducible polynomials of order n. (All such Galois groups are transitive.) - Charles R Greathouse IV, May 28 2014
REFERENCES
G. Butler and J. McKay, personal communication.
C. C. Sims, Computational methods in the study of permutation groups, pp. 169-183 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Marina Anagnostopoulou-Merkouri, R. A. Bailey, and Peter J. Cameron, Permutation groups, partition lattices and block structures, arXiv:2409.10461 [math.GR], 2024. See Table 1 p. 45.
G. Butler and J. McKay, The transitive groups of degree up to eleven, Comm. Algebra, 11 (1983), 863-911.
G. Butler and J. McKay, The transitive groups of degree up to eleven, Comm. Algebra, 11 (1983), 863-911. [Annotated scanned copy]
John J. Cannon and Derek F. Hol, The transitive permutation groups of degree 32
F. N. Cole, Note on the substitution groups of six, seven, and eight letters, Bull. Amer. Math. Soc. 2 (1893), 184-190. Gives a(8)=48 instead of 50.
Computational Algebra Group, Summary of New Features in Magma V2.21
J. Conway, A. Hulpke, and J. McKay, On Transitive Permutation Groups, LMS Journal of Computation and Mathematics 1 (1998), pp. 1-8. See especially Appendix A.
D. Holt, Enumerating subgroups of the symmetric group, in Computational Group Theory and the Theory of Groups, II, edited by L.-C. Kappe, A. Magidin and R. Morse. AMS Contemporary Mathematics book series, vol. 511, pp. 33-37. [Annotated copy]
Derek Holt and Gordon Royle, A Census of Small Transitive Groups and Vertex-Transitive Graphs, arXiv:1811.09015 [math.CO], 2018.
A. Hulpke, Konstruktion transitiver Permutationsgruppen, Dissertation, RWTH Aachen, 1996.
A. Hulpke, Constructing transitive permutation groups, J. Symbolic Comput. 39 (2005), 1-30.
E. G. Köhler, F. H. Lutz, Triangulated manifolds with few vertices: Vertex-transitive triangulations, arXiv:math/0506520 [math.GT], 2005.
J. Labelle and Y. N. Yeh, The relation between Burnside rings and combinatorial species, J. Combin. Theory, A 50 (1989), 269-284. See page 280.
EXAMPLE
a(3)=2: A_3 and S_3.
PROG
(GAP) a:=function(n)
return Length(AllTransitiveGroups(NrMovedPoints, n));
end; # Charles R Greathouse IV, May 28 2014
CROSSREFS
KEYWORD
nonn,core,hard,more,nice
EXTENSIONS
Corrected and extended to degree 31 by Alexander Hulpke, Aug 15 1996
Further corrections from Alexander Hulpke, Feb 19 2002
Degree 32 extended by Artur Jasinski, Feb 17 2011
Extended to degree 47 by Gabriel Verret, May 07 2016
STATUS
approved