OFFSET
5,2
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 5..100
FORMULA
E.g.f.: ((x/(1-x))^5)/5!.
If we define f(n,i,x) = sum(sum(binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j),j=i..k),k=i..n) then a(n+1)=(-1)^n*f(n,4,-6), (n>=4). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=5} 1/a(n) = 20*(Ei(1) - gamma) - 200*e + 1555/3, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=5} (-1)^(n+1)/a(n) = 1460*(gamma - Ei(-1)) - 880/e - 2515/3, where Ei(-1) = -A099285. (End)
MAPLE
A001777 := n-> n!*binomial(n-1, 4)/5!;
MATHEMATICA
Table[n! Binomial[n - 1, 4]/5!, {n, 5, 20}] (* T. D. Noe, Aug 10 2012 *)
PROG
(Sage) [binomial(n, 5)*factorial (n-1)/factorial (4) for n in range(5, 21)] # Zerinvary Lajos, Jul 07 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
STATUS
approved