[go: up one dir, main page]

login
A001660
Hypotenusal numbers.
(Formerly M1706 N0675)
1
1, 1, 2, 6, 36, 876, 408696, 83762796636, 3508125906207095591916, 6153473687096578758445014683368786661634996, 18932619208894981833333582059033329370801260096062214926751788496235698477988081702676
OFFSET
0,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. J. Sylvester and M. J. Hammond, On Hamilton's numbers, Phil. Trans. Roy. Soc., 178 (1887), 285-312.
LINKS
E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 496.
E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1. [Annotated scan of pages 488-499 only]
MATHEMATICA
h[1] = 2; h[n_] := h[n] = 2+Sum[(-1)^(i+1)*Product[h[n-i]-k, {k, 0, i}]/(i+1)!, {i, 1, n-1}]; a[0] = 1; a[n_] := h[n+1] - h[n]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Dec 05 2013 *)
CROSSREFS
First differences of A000905.
Sequence in context: A208650 A374453 A152480 * A368139 A275904 A014052
KEYWORD
nonn,easy,nice
STATUS
approved