[go: up one dir, main page]

login
A001634
a(n) = a(n-2) + a(n-3) + a(n-4), with initial values a(0) = 0, a(1) = 2, a(2) = 3, a(3) = 6.
(Formerly M0746 N0281)
8
0, 2, 3, 6, 5, 11, 14, 22, 30, 47, 66, 99, 143, 212, 308, 454, 663, 974, 1425, 2091, 3062, 4490, 6578, 9643, 14130, 20711, 30351, 44484, 65192, 95546, 140027, 205222, 300765, 440795, 646014, 946782, 1387574, 2033591, 2980370, 4367947, 6401535, 9381908
OFFSET
0,2
REFERENCES
E.-B. Escott, Reply to Query 1484, L'Intermédiaire des Mathématiciens, 8 (1901), 63-64.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
Gregory T. Minton, Linear recurrence sequences satisfying congruence conditions, Proc. Amer. Math. Soc. 142 (2014), no. 7, 2337--2352. MR3195758.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: x(2 + 3x + 4x^2)/(1 - x^2 - x^3 - x^4).
a(n) = Sum_{k=0..(n-1)/2}(Sum_{j=0..k+1}(binomial(j,n-2*k-j-1)*binomial(k+1,j))/(k+1))*(n+1). - Vladimir Kruchinin, Mar 22 2016
MAPLE
A001634:=-z*(2+3*z+4*z**2)/(1+z)/(z**3+z-1); # Simon Plouffe in his 1992 dissertation
a:= n-> (Matrix([[0, 4, -1, -1]]). Matrix(4, (i, j)-> if (i=j-1) then 1 elif j=1 then [0, 1, 1, 1][i] else 0 fi)^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Aug 01 2008
MATHEMATICA
LinearRecurrence[{0, 1, 1, 1}, {0, 2, 3, 6}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
CoefficientList[Series[x (2+3x+4x^2)/(1-x^2-x^3-x^4), {x, 0, 50}], x] (* Harvey P. Dale, Mar 26 2023 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(x*(2+3*x+4*x^2)/(1-x^2-x^3-x^4)+x*O(x^n), n))
(Haskell)
a001634 n = a001634_list !! n
a001634_list = 0 : 2 : 3 : 6 : zipWith (+) a001634_list
(zipWith (+) (tail a001634_list) (drop 2 a001634_list))
-- Reinhard Zumkeller, Mar 23 2012
(Maxima)
a(n):=(sum(sum(binomial(j, n-2*k-j-1)*binomial(k+1, j), j, 0, k+1)/(k+1), k, 0, (n-1)/2))*(n+1); /* Vladimir Kruchinin, Mar 22 2016 */
CROSSREFS
Sequence in context: A335372 A106379 A232929 * A172989 A095113 A345179
KEYWORD
nonn,easy,nice
STATUS
approved