OFFSET
0,2
REFERENCES
E.-B. Escott, Reply to Query 1484, L'Intermédiaire des Mathématiciens, 8 (1901), 63-64.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n=0..500
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
Gregory T. Minton, Linear recurrence sequences satisfying congruence conditions, Proc. Amer. Math. Soc. 142 (2014), no. 7, 2337--2352. MR3195758.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1).
FORMULA
G.f.: x(2 + 3x + 4x^2)/(1 - x^2 - x^3 - x^4).
a(n) = Sum_{k=0..(n-1)/2}(Sum_{j=0..k+1}(binomial(j,n-2*k-j-1)*binomial(k+1,j))/(k+1))*(n+1). - Vladimir Kruchinin, Mar 22 2016
MAPLE
A001634:=-z*(2+3*z+4*z**2)/(1+z)/(z**3+z-1); # Simon Plouffe in his 1992 dissertation
a:= n-> (Matrix([[0, 4, -1, -1]]). Matrix(4, (i, j)-> if (i=j-1) then 1 elif j=1 then [0, 1, 1, 1][i] else 0 fi)^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Aug 01 2008
MATHEMATICA
LinearRecurrence[{0, 1, 1, 1}, {0, 2, 3, 6}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
CoefficientList[Series[x (2+3x+4x^2)/(1-x^2-x^3-x^4), {x, 0, 50}], x] (* Harvey P. Dale, Mar 26 2023 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(x*(2+3*x+4*x^2)/(1-x^2-x^3-x^4)+x*O(x^n), n))
(Haskell)
a001634 n = a001634_list !! n
a001634_list = 0 : 2 : 3 : 6 : zipWith (+) a001634_list
(zipWith (+) (tail a001634_list) (drop 2 a001634_list))
-- Reinhard Zumkeller, Mar 23 2012
(Maxima)
a(n):=(sum(sum(binomial(j, n-2*k-j-1)*binomial(k+1, j), j, 0, k+1)/(k+1), k, 0, (n-1)/2))*(n+1); /* Vladimir Kruchinin, Mar 22 2016 */
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved