OFFSET
0,1
REFERENCES
J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley, 1987; see Table 5.2 p. 221.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 368 and 631.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
K. Appel and W. Haken, Every planar map is four colorable. I. Discharging, Illinois J. Math. 21 (1977), no. 3, 429-490.
G. A. Dirac, Map-color theorems, Canad. J. Math., 4 (1952), 480ff.
G. Ringel & J. W. T. Youngs, Solution Of The Heawood Map-Coloring Problem, Proc. Nat. Acad. Sci. USA, 60 (1968), 438-445.
Eric Weisstein's World of Mathematics, Chromatic Number
Eric Weisstein's World of Mathematics, Heawood Conjecture
FORMULA
a(n) = floor((7+sqrt(1+24*n))/2).
MAPLE
MATHEMATICA
Floor[(7+Sqrt[1+24*Range[0, 80]])/2] (* Harvey P. Dale, Feb 03 2012 *)
PROG
(Haskell)
a000703 = floor . (/ 2) . (+ 7) . sqrt . (+ 1) . (* 24) . fromInteger
-- Reinhard Zumkeller, Dec 04 2012
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved