[go: up one dir, main page]

login
A000352
One half of the number of permutations of [n] such that the differences have three runs with the same signs.
(Formerly M3954 N1629)
4
5, 29, 118, 418, 1383, 4407, 13736, 42236, 128761, 390385, 1179354, 3554454, 10696139, 32153963, 96592972, 290041072, 870647517, 2612991141, 7841070590, 23527406090, 70590606895, 211788597919, 635399348208, 1906265153508, 5718929678273, 17157057470297
OFFSET
4,1
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #13
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. Rodney Canfield and Herbert S. Wilf, Counting permutations by their runs up and down, arXiv:math/0609704 [math.CO], 2006.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = (3^n-4*2^n-2*n+11)/4, n>=4. - Tim Monahan, Jul 14 2011
G.f.: x^4*(5-6*x)/((1-3*x)*(1-2*x)*(1-x)^2).
Limit_{n->infinity} 4*a(n)/3^n = 1. - Philippe Deléham, Feb 22 2004
EXAMPLE
a(4)=5 because the permutations of [4] with three sign runs are 1324, 1423, 2143, 2314, 2413 and their reversals.
MAPLE
A000352:=-(-5+6*z)/(3*z-1)/(2*z-1)/(z-1)**2; # [Conjectured by Simon Plouffe in his 1992 dissertation.] [correct up to offset]
# second Maple program:
a:= n-> (<<0|0|1|2>>. <<7|1|0|0>, <-17|0|1|0>, <17|0|0|1>, <-6|0|0|0>>^n)[1, 4]:
seq(a(n), n=4..30); # Alois P. Heinz, Aug 26 2008
MATHEMATICA
nn = 40; CoefficientList[Series[x^4*(5 - 6*x)/((1 - 3*x)*(1 - 2*x)*(1 - x)^2), {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)
PROG
(PARI) a(n) = (3^n-4*2^n-2*n+11)/4;
CROSSREFS
a(n) = T(n, 3), where T(n, k) is the array defined in A008970.
Sequence in context: A268244 A297632 A153077 * A327133 A267921 A241676
KEYWORD
nonn
EXTENSIONS
Edited by Emeric Deutsch, Feb 18 2004
STATUS
approved