[go: up one dir, main page]

login
A000059
Numbers k such that (2k)^4 + 1 is prime.
(Formerly M0867 N0332)
2
1, 2, 3, 8, 10, 12, 14, 17, 23, 24, 27, 28, 37, 40, 41, 44, 45, 53, 59, 66, 70, 71, 77, 80, 82, 87, 90, 97, 99, 102, 105, 110, 114, 119, 121, 124, 127, 133, 136, 138, 139, 144, 148, 156, 160, 164, 167, 170, 176, 182, 187, 207, 215, 218, 221, 233, 236, 238, 244, 246
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Bohman, New primes of the form n^4+1, Nordisk Tidskr. Informationsbehandling (BIT) 13 (1973), 370-372.
M. Lal, Primes of the form n^4 + 1, Math. Comp., 21 (1967), 245-247.
FORMULA
a(n) = A000068(n+1)/2 for n >= 1. [Corrected by Jianing Song, Feb 03 2019]
EXAMPLE
(2 * 2)^4 + 1 = 4^4 + 1 = 17, which is prime, so 2 is in the sequence.
(2 * 3)^4 + 1 = 6^4 + 1 = 1297, which is prime, so 3 is in the sequence.
(2 * 4)^4 + 1 = 8^4 + 1 = 4097 = 17 * 241, so 4 is not in the sequence.
MAPLE
A000059:=n->`if`(isprime((2*n)^4+1), n, NULL): seq(A000059(n), n=1..250); # Wesley Ivan Hurt, Aug 26 2014
MATHEMATICA
Select[Range[300], PrimeQ[(2 * #)^4 + 1] &] (* Vladimir Joseph Stephan Orlovsky, Jan 24 2012 *)
PROG
(PARI) for(n=1, 10^3, if(isprime( (2*n)^4+1 ), print1(n, ", "))) \\ Hauke Worpel (thebigh(AT)outgun.com), Jun 11 2008 [edited by Michel Marcus, Aug 27 2014]
(Magma)[n: n in [1..10000] | IsPrime((2*n)^4+1)] # Vincenzo Librandi, Nov 18 2010
(Python)
from sympy import isprime
print([n for n in range(10**3) if isprime(16*n**4+1)])
# Derek Orr, Aug 27 2014
CROSSREFS
Cf. A037896 (primes of the form n^4 + 1).
Sequence in context: A325424 A057543 A190650 * A340301 A216761 A276559
KEYWORD
nonn,easy
EXTENSIONS
More terms from Hugo Pfoertner, Aug 27 2003
STATUS
approved