The Weierstrass zeta function is the quasiperiodic
function defined by
|
(1)
|
where
is the Weierstrass elliptic function
with invariants and , with
|
(2)
|
As in the case of other Weierstrass elliptic functions, the elliptic invariants
and
are frequently suppressed for compactness. The function is implemented in the Wolfram Language as WeierstrassZeta[u,
g2,
g3].
Using the definition above gives
where ,
so
|
(5)
|
so
is an odd function. Integrating gives
|
(6)
|
Letting
gives
|
(7)
|
so
|
(8)
|
Similarly,
|
(9)
|
From Whittaker and Watson (1990),
|
(10)
|
If ,
then
|
(11)
|
(Whittaker and Watson 1990, p. 446). Also,
|
(12)
|
(Whittaker and Watson 1990, p. 446).
The series expansion of is given by
|
(13)
|
where
and
|
(16)
|
for
(Abramowitz and Stegun 1972, p. 635). The first few coefficients are therefore
See also
Weierstrass Elliptic
Function,
Weierstrass Sigma Function
Related Wolfram sites
http://functions.wolfram.com/EllipticFunctions/WeierstrassZeta/,
http://functions.wolfram.com/EllipticFunctions/WeierstrassZetaHalfPeriodValues/
Explore with Wolfram|Alpha
References
Abramowitz, M. and Stegun, I. A. (Eds.). "Weierstrass Elliptic and Related Functions." Ch. 18 in Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 627-671, 1972.Brezhnev, Y. V. "Uniformisation:
On the Burnside Curve ." 9 Dec 2001. http://arxiv.org/abs/math.CA/0111150.Tölke,
F. "Spezielle Weierstraßsche Zeta-Funktionen." Ch. 8 in Praktische
Funktionenlehre, dritter Band: Jacobische elliptische Funktionen, Legendresche elliptische
Normalintegrale und spezielle Weierstraßsche Zeta- und Sigma Funktionen.
Berlin: Springer-Verlag, pp. 145-163, 1967.Whittaker, E. T.
and Watson, G. N. "Quasi-Periodic Functions. The Function " and "The Quasi-Periodicity of the Function
."
§20.4 and 20.41 in A
Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University
Press, pp. 445-447 and 449-451, 1990.Referenced on Wolfram|Alpha
Weierstrass Zeta Function
Cite this as:
Weisstein, Eric W. "Weierstrass Zeta Function."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/WeierstrassZetaFunction.html
Subject classifications