[go: up one dir, main page]

TOPICS
Search

Weierstrass Zeta Function


WeierstrassZetaReIm
WeierstrassZetaContours

The Weierstrass zeta function zeta(z;g_2,g_3) is the quasiperiodic function defined by

 (dzeta(z;g_2,g_3))/(dz)=-P(z;g_2,g_3),
(1)

where P(z;g_2,g_3) is the Weierstrass elliptic function with invariants g_2 and g_3, with

 lim_(z->0)[zeta(z;g_2,g_3)-z^(-1)]=0.
(2)

As in the case of other Weierstrass elliptic functions, the elliptic invariants g_2 and g_3 are frequently suppressed for compactness. The function is implemented in the Wolfram Language as WeierstrassZeta[u, {g2, g3}].

Using the definition above gives

zeta(z)-z^(-1)=-int_0^z[P(z)-z^(-2)]dz
(3)
=-sum^'_(m,n=-infty)^inftyint_0^z[(z-Omega_(mn))^(-2)-Omega_(mn)^(-2)]dz,
(4)

where Omega_(mn)=2momega_1+2nomega_2, so

 zeta(z)=z^(-1)+sum^'_(m,n=-infty)^infty[(z-Omega_(mn))^(-1)+Omega_(mn)^(-1)+zOmega_(mn)^(-2)]
(5)

so zeta(z) is an odd function. Integrating P(z+2omega_1)=P(z) gives

 zeta(z+2omega_1)=zeta(z)+2eta_1.
(6)

Letting z=-omega_1 gives

 zeta(-omega_1)+2eta_1=-zeta(omega_1)+2eta_1,
(7)

so

 eta_1=zeta(omega_1).
(8)

Similarly,

 eta_2=zeta(omega_2).
(9)

From Whittaker and Watson (1990),

 eta_1omega_2-eta_2omega_1=1/2pii.
(10)

If x+y+z=0, then

 [zeta(x)+zeta(y)+zeta(z)]^2+zeta^'(x)+zeta^'(y)+zeta^'(z)=0
(11)

(Whittaker and Watson 1990, p. 446). Also,

 2(|1 P(x) P^2(x); 1 P(y) P^2(y); 1 P(z) P^2(z)|)/(|1 P(x) P^'(x); 1 P(y) P^'(y); 1 P(z) P^'(z)|)=zeta(x+y+z)-zeta(x)-zeta(y)-zeta(z)
(12)

(Whittaker and Watson 1990, p. 446).

The series expansion of zeta(z) is given by

 zeta(z)=z^(-1)-sum_(k=2)^infty(c_kz^(2k-1))/(2k-1),
(13)

where

c_2=(g_2)/(20)
(14)
c_3=(g_3)/(28)
(15)

and

 c_k=3/((2k+1)(k-3))sum_(m=2)^(k-2)c_mc_(k-m)
(16)

for k>=4 (Abramowitz and Stegun 1972, p. 635). The first few coefficients are therefore

c_4=1/3c_2^2
(17)
c_5=3/(11)c_2c_3
(18)
c_6=1/(39)(2c_2^3+3c_3^2)
(19)
c_7=2/(33)c_2^2c_3
(20)
c_8=5/(7293)(11c_2^4+36c_3^2c_2).
(21)

See also

Weierstrass Elliptic Function, Weierstrass Sigma Function

Related Wolfram sites

http://functions.wolfram.com/EllipticFunctions/WeierstrassZeta/, http://functions.wolfram.com/EllipticFunctions/WeierstrassZetaHalfPeriodValues/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Weierstrass Elliptic and Related Functions." Ch. 18 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 627-671, 1972.Brezhnev, Y. V. "Uniformisation: On the Burnside Curve y^2=x^5-x." 9 Dec 2001. http://arxiv.org/abs/math.CA/0111150.Tölke, F. "Spezielle Weierstraßsche Zeta-Funktionen." Ch. 8 in Praktische Funktionenlehre, dritter Band: Jacobische elliptische Funktionen, Legendresche elliptische Normalintegrale und spezielle Weierstraßsche Zeta- und Sigma Funktionen. Berlin: Springer-Verlag, pp. 145-163, 1967.Whittaker, E. T. and Watson, G. N. "Quasi-Periodic Functions. The Function zeta(z)" and "The Quasi-Periodicity of the Function zeta(z)." §20.4 and 20.41 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 445-447 and 449-451, 1990.

Referenced on Wolfram|Alpha

Weierstrass Zeta Function

Cite this as:

Weisstein, Eric W. "Weierstrass Zeta Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/WeierstrassZetaFunction.html

Subject classifications